Source code for torch.distributed.elastic.rendezvous.etcd_rendezvous
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import json
import logging
import sys
import threading
import time
from typing import Optional
import etcd # type: ignore[import]
from torch.distributed.elastic.rendezvous import (
RendezvousClosedError,
RendezvousError,
RendezvousHandler,
RendezvousParameters,
RendezvousTimeoutError,
)
from .utils import parse_rendezvous_endpoint
from .etcd_store import EtcdStore, cas_delay
_log_fmt = logging.Formatter("%(levelname)s %(asctime)s %(message)s")
_log_handler = logging.StreamHandler(sys.stderr)
_log_handler.setFormatter(_log_fmt)
log = logging.getLogger(__name__)
log.propagate = False
log.setLevel(logging.INFO)
log.addHandler(_log_handler)
# Retryable failure exception means the we were too late to make
# a desired state transition (e.g. because of a race condition),
# and should now restart from the beginning.
# A small delay is recommended to avoid spamming Etcd.
class EtcdRendezvousRetryableFailure(Exception):
pass
# Similar to retryable failure, but the new state we observed suggests we
# can re-try immediately, i.e. without a need for "safety delay".
class EtcdRendezvousRetryImmediately(Exception):
pass
# Default timeout for the rendezvous.
_DEFAULT_TIMEOUT: int = 600 # 10 minutes
# Additional waiting time after reaching the minimum number of nodes
# in case the rendezvous is elastic (min != max).
_DEFAULT_LAST_CALL_TIMEOUT: int = 30 # 30 seconds
# Various constants used internally in EtcdRendezvous
CONST_ETCD_SETUP_TTL = 5
CONST_ETCD_FROZEN_TTL = 10
CONST_ETCD_JOINABLE_EPHEMERAL_TTL = 10
# Ephemeral node TTL for worker's keep-alive key:
CONST_WORKER_KEEPALIVE_TTL = 10
# TTL for the ephemeral run_id-specific directory. All rendezvous state data
# for a specific run_id (job instance) is contained within directory.
# Its only role is to clean-up rendezvous data from old runs (for the case when
# etcd server is persistent), and has no affect on correctnes, but should be
# larger than any timeouts that a worker process is expected to survive:
CONST_RUNID_SUBROOT_TTL = 7200 # 2 hours
[docs]class EtcdRendezvousHandler(RendezvousHandler):
"""
Implements a
:py:class:`torch.distributed.elastic.rendezvous.RendezvousHandler` interface
backed by
:py:class:`torch.distributed.elastic.rendezvous.etcd_rendezvous.EtcdRendezvous`.
``EtcdRendezvousHandler`` uses a URL to configure the type of rendezvous to
use and to pass implementation specific configurations to the rendezvous
module. The basic etcd rendezvous configuration URL looks like the following
::
etcd://<etcd_address>:<port>/<job_id>?min_workers=<min_workers>&max_workers=<max_workers> # noqa: W605
-- example --
etcd://localhost:2379/1234?min_workers=1&max_workers=3
The URL above is interpreted as follows:
1. Use the rendezvous handler that is registered with the ``etcd``
scheme
2. The ``etcd`` endpoint to use is ``localhost:2379``
3. ``job_id == 1234`` is used as the prefix in etcd (this allows one to
share a common etcd server for multiple jobs so long as the
``job_ids`` are guaranteed to be unique). Note that the job id can be
any string (e.g. does not need to be a number) as long as it is
unique.
4. ``min_workers=1`` and ``max_workers=3`` specifies a range for
membership size - Torch Distributed Elastic starts running the job as
long as the cluster size is greater than or equal to ``min_workers``
and admits up to ``max_workers`` into the cluster.
Below are a full list of the parameters that can be passed to etcd
rendezvous:
+--------------------------------------------+--------------------------+
| Parameter | Description |
+============================================+==========================+
| min_workers | minimum number of |
| | workers for the |
| | rendezvous to be valid |
+--------------------------------------------+--------------------------+
| max_workers | maximum number of |
| | workers to admit |
+--------------------------------------------+--------------------------+
| timeout | total timeout within |
| | which next_rendezvous is |
| | expected to succeed |
| | (default 600s) |
+--------------------------------------------+--------------------------+
| last_call_timeout | additional wait amount |
| | (“last call”) after min |
| | number of workers has |
| | been reached (defaults |
| | to 30s) |
+--------------------------------------------+--------------------------+
| etcd_prefix | path prefix (from etcd |
| | root), inside which all |
| | etcd nodes will be |
| | created (defaults to |
| | ``/torchelastic/p2p``) |
+--------------------------------------------+--------------------------+
"""
def __init__(self, rdzv_impl):
self._rdzv_impl = rdzv_impl
def __del__(self):
# TODO: look into using weakref here instead.
del self._rdzv_impl
def get_backend(self) -> str:
return "etcd"
def next_rendezvous(self):
rdzv_version, rank, world_size = self._rdzv_impl.rendezvous_barrier()
log.info("Creating EtcdStore as the c10d::Store implementation")
store = self._rdzv_impl.setup_kv_store(rdzv_version)
return store, rank, world_size
def is_closed(self):
try:
_, state = self._rdzv_impl.get_rdzv_state()
return state["status"] == "closed"
except etcd.EtcdKeyNotFound:
# No rendezvous state, so it cannot be closed.
return False
def set_closed(self):
self._rdzv_impl.set_closed()
def num_nodes_waiting(self):
try:
_, state = self._rdzv_impl.get_rdzv_state()
if state["status"] == "final":
return state["num_workers_waiting"]
except etcd.EtcdKeyNotFound:
pass
return 0
def get_run_id(self) -> str:
return self._rdzv_impl._run_id
def shutdown(self) -> bool:
try:
self.set_closed()
return True
except BaseException as e:
log.warning(f"Shutdown failed. Error occurred: {str(e)}")
return False
# TODO: we should probably handle a few additional errors,
# like EtcdLeaderElectionInProgress and EtcdWatcherCleared. These are
# only relevant for multi-node Etcd ensemble. A simple retry would work,
# but is verbose to add everywhere. Consider wrapping the client calls
# into auto-retry for these errors?
#
class EtcdRendezvous(object):
"""
A rendezvous implementation that uses `etcd <https://etcd.io/>`__ as
the backend store.
"""
def __init__(
self,
client,
prefix,
run_id,
num_min_workers,
num_max_workers,
timeout,
last_call_timeout,
):
self.client = client
log.info("Etcd machines: " + str(self.client.machines))
self._prefix = prefix
self._run_id = run_id
self._num_min_workers = num_min_workers
self._num_max_workers = num_max_workers
self._timeout = timeout
self._last_call_timeout = last_call_timeout
# For cleaning up TTL refresher threads (for ephemeral keys)
self._lease_run_id_stop = None
self._lease_this_rank_stop = None
if not self._prefix.endswith("/"):
self._prefix += "/"
# Setup a permanent prefix dir, if didn't exist
if self._prefix != "/":
self.create_path_if_not_exists(self._prefix)
# Lease a "sub-root" node specific to this job instance (run_id)
self.create_path_if_not_exists(self.get_path(""), ttl=CONST_RUNID_SUBROOT_TTL)
self._lease_run_id_stop = self.setup_lease_renewal(
self.get_path(""), ttl=CONST_RUNID_SUBROOT_TTL
)
# Subdir for all rendezvous work
self.create_path_if_not_exists(self.get_path("/rdzv"))
# Create a rendezvous version counter, if doesn't exist
try:
self.client.write(
key=self.get_path("/rdzv/version_counter"), value="0", prevExist=False
)
except etcd.EtcdAlreadyExist:
pass
def __del__(self):
# TODO: look into using weakref here instead.
if self._lease_run_id_stop is not None:
self._lease_run_id_stop.set()
if self._lease_this_rank_stop is not None:
self._lease_this_rank_stop.set()
def rendezvous_barrier(self):
"""
Main entry point for next rendezvous.
This method is blocking until rendezvous succeeds or a timeout occurs.
Returns:
``(rdzv_version, rank, world_size)``
Raises:
RendezvousTimeoutError - timeout waiting for rendezvous
RendezvousClosedError - rendezvous is or was closed while waiting
RendezvousError - other persistent errors that
render the rendezvous non-retryable
"""
self._rendezvous_deadline = time.time() + self._timeout
while True:
if time.time() > self._rendezvous_deadline:
raise RendezvousTimeoutError()
log.info("Attempting to join next rendezvous")
try:
# Dis-own our lease in the previous rendezvous, if exists
if self._lease_this_rank_stop is not None:
self._lease_this_rank_stop.set()
return self.init_phase()
except EtcdRendezvousRetryImmediately:
# The type of failure suggests we can retry without delay
pass
except EtcdRendezvousRetryableFailure:
# In case of retryable failure, wait a small delay
# to avoid spamming etcd
time.sleep(1)
except RendezvousTimeoutError:
log.info("Rendezvous timeout occured in EtcdRendezvousHandler")
raise
except RendezvousClosedError:
log.info(
f"Rendezvous for run_id={self._run_id} was observed to be closed"
)
raise
except RendezvousError:
raise
except Exception as e:
# In case of a general exception, wait a small delay
# to avoid spamming etcd
# FIXME: there are a few things that fall under this like
# etcd.EtcdKeyNotFound, etc, which could be handled more explicitly.
log.info("Rendezvous attempt failed, will retry. Reason: " + str(e))
time.sleep(1)
def init_phase(self):
"""
Initially, the rendezvous state is expected to be one of:
1. empty (non-existent) - in this case we try to create a new one.
2. joinable - we try to join it.
3. final - we announce ourselves as waiting, and go into monitoring mode
Any other state is considered transitional, and will be retried after
a short delay.
Returns:
``(rdzv_version, rank, world_size)``
Raises:
RendezvousClosedError - current rendezvous was/is closed
EtcdRendezvousRetryableFailure - observed some intermediate
state, which is best handled by retrying later
"""
try:
active_version = self.try_create_rendezvous()
state = json.loads(active_version.value)
log.info("New rendezvous state created: " + str(state))
except etcd.EtcdAlreadyExist:
active_version, state = self.get_rdzv_state()
# Note: it is possible for above query to fail (etcd.EtcdKeyNotFound),
# but this is ok for us - just means we'll restart from beginning.
log.info("Observed existing rendezvous state: " + str(state))
if state["status"] == "closed":
raise RendezvousClosedError()
if state["status"] == "joinable":
return self.join_phase(state["version"])
if state["status"] == "final":
self.handle_existing_rendezvous(state["version"])
raise EtcdRendezvousRetryImmediately()
self.try_wait_for_state_change(etcd_index=active_version.etcd_index + 1)
raise EtcdRendezvousRetryableFailure()
def join_phase(self, expected_version):
"""
We observed a rendezvous state in 'joinable' state, and attempt to join this
particular version, and then wait for all other peers to join.
"""
# Failure to join will propagate an exception, causing a re-entry.
active_version, this_rank = self.join_rendezvous(expected_version)
state = json.loads(active_version.value)
log.info(
"Joined rendezvous version {} as rank {}. Full state: {}".format(
state["version"], this_rank, state
)
)
# If this worker was first to reach num_min_workers requirement,
# and rendezvous is still joinable (therefore it is elastic),
# then this worker will be repsonsible for waiting out the "last call"
# timeout and closing (i.e. transitioning to 'frozen') the rendezvous
# afterwards.
# As a safety against a potential failure of this worker (during the
# last call timeout), the rendezvous state is made ephemeral
# when min_num_workers is reached.
if this_rank == self._num_min_workers - 1 and state["status"] == "joinable":
log.info("Rank {} is responsible for join last call.".format(this_rank))
last_call_deadline = time.time() + self._last_call_timeout
self.handle_join_last_call(expected_version, last_call_deadline)
log.info("Rank {} finished join last call.".format(this_rank))
# Wait for rendezvous state to be frozen, which means a fixed set of peers
log.info("Waiting for remaining peers.")
active_version = self.wait_for_peers(expected_version)
state = json.loads(active_version.value)
assert (
state["version"] == expected_version
), "Logic error: failed to observe version mismatch"
return self.confirm_phase(expected_version, this_rank)
def confirm_phase(self, expected_version, this_rank):
"""
Once the rendezvous state trainsitions from 'joinable' to 'frozen',
we have every participant confirm their membership and setup per-member
keep-alive TTL keys, and then wait for all other participants to confirm,
which would then successfully conclude this rendezvous.
"""
log.info("All peers arrived. Confirming membership.")
self.confirm_membership(expected_version, this_rank)
log.info("Waiting for confirmations from all peers.")
active_version = self.wait_for_final(expected_version)
state = json.loads(active_version.value)
log.info(
"Rendezvous version {} is complete. Final state: {}".format(
state["version"], state
)
)
# Rendezvous version number; our rank in it; world size
return state["version"], this_rank, len(state["participants"])
def handle_existing_rendezvous(self, expected_version):
"""
Handle the case when there's an existing (state 'final) rendezvous already
in place, and we have to announce ourselves waiting, and wait until
the next rendezvous opportunity.
"""
# If state is 'final' -> increment num_workers_waiting
# Then, observe state changes:
# 1. if it's no longer final -> bail out and re-try
# 2. if keep alives are missing, destroy it and bail out.
active_state = self.announce_self_waiting(expected_version)
log.info(
"Added self to waiting list. Rendezvous full state: {}".format(
active_state.value
)
)
self.wait_for_rendezvous_to_free(expected_version)
log.info("Previously existing rendezvous state changed. Will re-try joining.")
def try_create_rendezvous(self):
"""
Create new rendezvous state or raise an exception that indicates
an unexpected state (e.g. already exists)
Raises:
RendezvousError - on unexpected state
"""
# Initially active_version is ephemeral - this is to handle the
# possibility that might fail to complete the setup transaction,
# i.e. the transition "setup" -> "joinable".
active_version = self.client.write(
key=self.get_path("/rdzv/active_version"),
value=json.dumps({"status": "setup"}),
prevExist=False,
ttl=CONST_ETCD_SETUP_TTL,
)
try:
version_counter = self.client.get(self.get_path("/rdzv/version_counter"))
version_counter.value = str(int(version_counter.value) + 1)
self.client.update(version_counter)
except (etcd.EtcdKeyNotFound, etcd.EtcdCompareFailed):
raise RendezvousError(
"Unexpected state of EtcdRendezvousHandler, worker needs to die."
)
# Any failure below results in declaring a retryable rendezvous failure.
# The ephemeral /rdzv/active_version will expire and someone can then
# re-try the setup process.
# Create directory node for participant data
self.client.write(
key=self.get_path("/rdzv/v_{}".format(version_counter.value)),
value=None,
dir=True,
prevExist=False,
)
# Publish rendezvous version and signal it is ready-to-be-joined.
# If rendezvous was set closed just before this, a retry will happen,
# where the closed condition will be handled.
return self.client.test_and_set(
key=self.get_path("/rdzv/active_version"),
value=json.dumps(
{
"status": "joinable",
"version": version_counter.value,
"participants": [],
}
),
prev_value=active_version.value,
)
def join_rendezvous(self, expected_version):
"""
Helper method for the join phase.
"""
# Use compare-and-swap to add self to rendezvous state:
while True:
cas_delay()
active_version, state = self.get_rdzv_state()
if state["status"] != "joinable":
raise EtcdRendezvousRetryableFailure(
"Rendezvous state became non-joinable before we could join. "
"Must join next one."
)
if state["version"] != expected_version:
raise EtcdRendezvousRetryImmediately(
"Rendezvous version changed. Must try join the new one."
)
assert (
len(state["participants"]) < self._num_max_workers
), "Logic error: joinable rendezvous should always have space left"
this_rank = len(state["participants"])
state["participants"].append(this_rank)
# When reaching min workers, or changing state to frozen, we'll set
# the active_version node to be ephemeral.
set_ttl: Optional[int] = None
if len(state["participants"]) == self._num_max_workers:
state["status"] = "frozen"
state["keep_alives"] = []
set_ttl = CONST_ETCD_FROZEN_TTL
elif len(state["participants"]) >= self._num_min_workers:
set_ttl = CONST_ETCD_JOINABLE_EPHEMERAL_TTL
try:
# Compare-and-swap.
active_version = self.client.test_and_set(
key=self.get_path("/rdzv/active_version"),
value=json.dumps(state),
prev_value=active_version.value,
ttl=set_ttl,
)
# We succeeded joining.
return active_version, this_rank
except etcd.EtcdCompareFailed:
log.info("Join rendezvous CAS unsuccessful, retrying")
def wait_for_peers(self, expected_version):
"""
Helper method for the join phase.
"""
active_version, state = self.get_rdzv_state()
while True:
if state["status"] == "frozen" and state["version"] == expected_version:
# Success, all peers arrived.
return active_version
elif state["status"] == "joinable" and state["version"] == expected_version:
# Continue waiting for any interesting events.
active_version, state = self.try_wait_for_state_change(
etcd_index=active_version.etcd_index + 1
)
else:
# No valid transition possible at this point
raise EtcdRendezvousRetryableFailure(
"Rendezvous state transition no longer possible. Must re-enter."
)
def confirm_membership(self, expected_version, this_rank):
"""
Helper method for the confirm phase
"""
# Compare-and-swap loop
while True:
cas_delay()
active_version, state = self.get_rdzv_state()
if state["status"] != "frozen":
raise EtcdRendezvousRetryImmediately(
"Rendezvous no longer frozen, before we confirmed. "
"Must join next one"
)
if state["version"] != expected_version:
raise EtcdRendezvousRetryImmediately(
"Rendezvous version changed. Must try join the new one."
)
this_lease_key = self.get_path(
"/rdzv/v_{}/rank_{}".format(expected_version, this_rank)
)
self.client.set(this_lease_key, value=None, ttl=CONST_WORKER_KEEPALIVE_TTL)
state["keep_alives"].append(this_lease_key)
if len(state["keep_alives"]) == len(state["participants"]):
# Everyone confirmed (this rank is last to do so)
state["status"] = "final"
state["num_workers_waiting"] = 0
finalize = True
else:
finalize = False
try:
# Compare-and-swap. If new state is still frozen, keep it ephemeral.
active_version = self.client.test_and_set(
key=self.get_path("/rdzv/active_version"),
value=json.dumps(state),
prev_value=active_version.value,
ttl=None if finalize else CONST_ETCD_FROZEN_TTL,
)
self._lease_this_rank_stop = self.setup_lease_renewal(
this_lease_key, ttl=CONST_WORKER_KEEPALIVE_TTL
)
return active_version
except etcd.EtcdCompareFailed:
log.info("Confirm membership CAS unsuccessful, retrying")
def wait_for_final(self, expected_version):
"""
Helper method for the confirm phase
"""
active_version, state = self.get_rdzv_state()
while True:
if state["status"] == "final" and state["version"] == expected_version:
# Succcess. This rendezvous is final, and we accept it.
return active_version
elif state["status"] == "frozen" and state["version"] == expected_version:
# Continue waiting for any interesting events.
active_version, state = self.try_wait_for_state_change(
etcd_index=active_version.etcd_index + 1
)
else:
# No valid transition possible at this point
raise EtcdRendezvousRetryableFailure(
"Rendezvous state transition no longer possible. Must re-enter."
)
def announce_self_waiting(self, expected_version):
"""
Announce this worker is waiting (via num_workers_waiting counter) to join next
rendezvous, but only if state and version match.
"""
while True:
cas_delay()
active_version, state = self.get_rdzv_state()
if state["status"] != "final" or state["version"] != expected_version:
raise EtcdRendezvousRetryImmediately()
# Increment counter to signal an additional waiting worker.
state["num_workers_waiting"] += 1
try:
active_version = self.client.test_and_set(
key=self.get_path("/rdzv/active_version"),
value=json.dumps(state),
prev_value=active_version.value,
)
return active_version
except etcd.EtcdCompareFailed:
log.info("Announce self as waiting CAS unsuccessful, retrying")
def wait_for_rendezvous_to_free(self, expected_version):
"""
When there's an existing valid rendezvous in state 'final', we have to
wait until the next opportunity to join.
Such opportunity may come from:
1. rendezvous state changed by someone else, in which case we unblock and retry.
2. rendezvous becomes invalid because at least one member failed to renew their
leased keep_alive node. We detect this, and destroy the rendezvous.
"""
active_version, state = self.get_rdzv_state()
while True:
if state["status"] != "final" or state["version"] != expected_version:
return
# Check if current rendezvous state is valid, in the sense that all
# its members are alive (renewing their lease).
# If not, try destroy this rendezvous, so a new one can be created.
alive_members = self.client.get(
self.get_path("/rdzv/v_{version}".format(version=expected_version))
)
keep_alive_keys = [ch.key for ch in alive_members.children]
for key in state["keep_alives"]:
if key not in keep_alive_keys:
# This participant didn't renew their lease. We'll declare this
# rendezvous version as dead (but only if it hadn't changed)
log.info("Keep-alive key {} is not renewed.".format(key))
log.info(
"Rendevous version {} is incomplete. ".format(expected_version)
)
log.info("Attempting to destroy it.")
# Compare-and-delete operation. Throws if compare failed,
# which means rendezvous was already destroyed/re-created/closed,
# and we can try to re-enter the barrier.
self.client.delete(
key=self.get_path("/rdzv/active_version"),
prevValue=active_version.value,
)
log.info(
"Destroyed rendezvous version {} successfully.".format(
expected_version
)
)
# We can return (and retry) immediately
return
# Existing rendezvous seems valid, no reason to destroy it.
# We just have to wait until something changes and re-check.
try:
overall_timeout = (
max(self._rendezvous_deadline - time.time(), 0.0) + 1.0
)
self.client.watch(
key=self.get_path("/rdzv"),
index=active_version.etcd_index + 1,
recursive=True,
timeout=overall_timeout,
)
except (etcd.EtcdEventIndexCleared, etcd.EtcdWatchTimedOut):
pass
if time.time() > self._rendezvous_deadline:
raise RendezvousTimeoutError()
active_version, state = self.get_rdzv_state()
def handle_join_last_call(self, expected_version, deadline):
"""
After we reach min number of workers, one particular worker takes on the
responsibility of waiting an additional timeout before closing the join window.
If the worker responsible for this fails, the rendezvous will be destroyed due
to expiring TTL, and the other participants will re-rendezvous.
Here we expect to see state <joinable, expected_version>
Exit gracefully if either:
1. state becomes <frozen, expected_version>
2. timeout happens (reaching deadline), in which case
we try the tranisiton to <frozen, expected_version>
Exit with exception otherwise.
"""
active_version, state = self.get_rdzv_state()
while True:
if state["status"] == "frozen" and state["version"] == expected_version:
# Worker set became frozen before last-call timeout. This is possible
# when num_max_workers is reached before the tiemout.
return
if state["status"] != "joinable" or state["version"] != expected_version:
raise EtcdRendezvousRetryableFailure(
"Rendezvous state transition no longer possible. Must re-enter."
)
# If timeout occurred, attempt a state transition (joinable -> frozen)
if time.time() >= deadline:
state["status"] = "frozen"
state["keep_alives"] = []
try:
active_version = self.client.test_and_set(
key=self.get_path("/rdzv/active_version"),
value=json.dumps(state),
prev_value=active_version.value,
ttl=CONST_ETCD_FROZEN_TTL,
)
# We successfully made this rendezvous frozen.
return
except etcd.EtcdCompareFailed:
log.info("Join last-call transition CAS unsuccessful. Will retry")
cas_delay()
active_version, state = self.get_rdzv_state()
continue
# Timeout did not occur, so we must refresh TTL, and wait for
# further changes. Note: we only want TTL to be refreshed if
# state is still joinable, hence we use CAS for that here,
# even though we don't change any of the data.
try:
active_version = self.client.test_and_set(
key=self.get_path("/rdzv/active_version"),
value=active_version.value,
prev_value=active_version.value,
ttl=CONST_ETCD_JOINABLE_EPHEMERAL_TTL,
)
# Minimize "oversleeping":
timeout = min(
CONST_ETCD_JOINABLE_EPHEMERAL_TTL / 2,
deadline - time.time() + 1.0, # Oversleeping by 1s is ok.
)
active_version, state = self.try_wait_for_state_change(
etcd_index=active_version.etcd_index + 1, timeout=timeout
)
except etcd.EtcdCompareFailed:
log.info("Join last-call TTL refresh CAS unsuccessful, will retry")
cas_delay()
active_version, state = self.get_rdzv_state()
def set_closed(self):
"""
Mark rendezvous 'closed' for current run_id, which is used to signal other
participants to not attempt to perform (re-)rendezvous. This is useful
when one of the workers decides the job is complete.
"""
while True:
active_version, state = self.get_rdzv_state()
if state["status"] == "closed":
# Already closed by someone else.
return
state["status"] = "closed"
try:
self.client.test_and_set(
key=self.get_path("/rdzv/active_version"),
value=json.dumps(state),
prev_value=active_version.value,
)
return
except etcd.EtcdCompareFailed:
log.info("Set closed CAS unsuccessful, retrying")
cas_delay()
def get_rdzv_state(self):
active_version = self.client.get(key=self.get_path("/rdzv/active_version"))
return active_version, json.loads(active_version.value)
def try_wait_for_state_change(self, etcd_index, timeout=None):
# Don't sleep past the overall deadline (at least more than by 1s)
overall_timeout = max(self._rendezvous_deadline - time.time(), 0.0) + 1.0
timeout = overall_timeout if timeout is None else min(timeout, overall_timeout)
try:
self.client.watch(
self.get_path("/rdzv/active_version"), index=etcd_index, timeout=timeout
)
except (etcd.EtcdEventIndexCleared, etcd.EtcdWatchTimedOut):
pass
if time.time() > self._rendezvous_deadline:
raise RendezvousTimeoutError()
# Unfortunately, we have to do another fetch in order to get last etcd_index.
return self.get_rdzv_state()
def get_path(self, path):
if not path.startswith("/"):
path = "/" + path
return "{prefix}run_{run_id}{path}".format(
prefix=self._prefix, run_id=self._run_id, path=path
)
def create_path_if_not_exists(self, full_path, ttl=None):
try:
self.client.write(
key=full_path, value=None, dir=True, prevExist=False, ttl=ttl
)
except etcd.EtcdAlreadyExist:
pass
def setup_lease_renewal(self, full_path, ttl):
# NOTE: For ephemeral key TTL renewal (~lease) to work correctly,
# make sure you don't call any long-blocking methods that do not
# release the Python's GIL! An example of this is calling a pybind11
# extension function that is blocking / long-running, but is not
# doing a scoped release of the GIL.
def lease_worker(client, path, ttl, stop_event):
while True:
try:
client.refresh(path, ttl=ttl)
except etcd.EtcdKeyNotFound:
break
except ConnectionRefusedError:
# This error usually occurs during test when the server already got terminated but the
# python garbage collector have not yet invoked the __del__ method.
break
if stop_event.wait(timeout=ttl / 2):
break
lease_stop_event = threading.Event()
lease_thread = threading.Thread(
target=lease_worker, args=(self.client, full_path, ttl, lease_stop_event)
)
lease_thread.daemon = True
lease_thread.start()
return lease_stop_event
def store_extra_data(self, rdzv_version, key, value):
node = self.get_path("/rdzv/v_{}/extra_data".format(rdzv_version))
try:
# If first time we are storing anything:
extra_data = self.client.write(
key=node, value=json.dumps({key: value}), prevExist=False
)
return
except etcd.EtcdAlreadyExist:
pass
# CAS loop, to make sure we don't lose concurrent stores.
while True:
# We never delete extra_data. Failure here should be fatal, no special handling.
extra_data = self.client.get(node)
new_extra_data_value = json.loads(extra_data.value)
new_extra_data_value[key] = value
try:
extra_data = self.client.test_and_set(
key=node,
value=json.dumps(new_extra_data_value),
prev_value=extra_data.value,
)
return
except etcd.EtcdCompareFailed:
log.info("Store extra_data CAS unsuccessful, retrying")
time.sleep(0.1)
def load_extra_data(self, rdzv_version, key, timeout=None):
# 'extra_data' node itself, and the directory it is located in:
node = self.get_path("/rdzv/v_{}/extra_data".format(rdzv_version))
node_dir = self.get_path("/rdzv/v_{}".format(rdzv_version))
# TODO: implement timeout
# https://github.com/pytorch/elastic/issues/12
while True:
# Combined wait for the node itself, and the key inside it.
root = self.client.get(node_dir)
# Find the extra_data node, if it exists
extra_data = [n for n in root.children if n.key == node]
assert len(extra_data) <= 1
# Node for extra_data exists, check the desired key inside it.
if len(extra_data) == 1:
extra_data_dict = json.loads(extra_data[0].value)
if key in extra_data_dict:
return extra_data_dict[key]
# The 'extra_data' node doesn't exist, or they key isn't published yet.
# Wait for interesting events on the extra_data node and retry.
try:
self.client.watch(node, index=root.etcd_index + 1)
except (etcd.EtcdEventIndexCleared, etcd.EtcdWatchTimedOut):
pass
def setup_kv_store(self, rdzv_version):
store_path = self.get_path(f"/rdzv/v_{rdzv_version}/kv")
self.create_path_if_not_exists(store_path)
return EtcdStore(etcd_client=self.client, etcd_store_prefix=store_path)
def _create_etcd_client(params: RendezvousParameters) -> etcd.Client:
"""
Creates a new ``etcd.Client`` from the specified ``RendezvousParameters``.
"""
hostname, port = parse_rendezvous_endpoint(params.endpoint, 2379)
# The communication protocol
protocol = params.config.get("protocol")
if protocol is None:
protocol = "http"
else:
if protocol != "http" and protocol != "https":
raise ValueError("The etcd protocol must be HTTP or HTTPS.")
# The SSL client certificate
ssl_cert = params.config.get("cert")
if ssl_cert is not None:
cert_key = params.config.get("key")
if cert_key is not None:
# The etcd client expects the certificate key as the second element
# of the `cert` tuple.
ssl_cert = (ssl_cert, cert_key)
# The root certificate
ca_cert = params.config.get("cacert")
return etcd.Client(
hostname,
port,
protocol=protocol,
cert=ssl_cert,
ca_cert=ca_cert,
allow_reconnect=True,
)
# Handler for torch.distributed "static" registration
def create_rdzv_handler(params: RendezvousParameters) -> RendezvousHandler:
"""
Usage:
::
rdzv_params = RendezvousParameters(
backend="etcd",
endpoint="192.168.0.42:2379",
run_id="123",
min_nodes=4,
max_nodes=8,
timeout=300,
last_call_timeout=30,
etcd_prefix="custom_prefix",
protocol="https",
cacert="/etc/kubernetes/certs/ca.crt",
cert="/etc/kubernetes/certs/client.crt",
key="/etc/kubernetes/certs/client.key")
# -- or --
rdzv_params = RendezvousParameters(
backend="etcd",
endpoint="192.168.0.42:2379",
run_id="123",
min_nodes=4,
max_nodes=8)
etcd_rdzv_handler = create_etcd_rendezvous_handler(rdzv_params)
Where:
run_id - unique id for this training job instance,
min_nodes - min number of workers expected to join the rendezvous,
max_nodes - max number of workers allowed to join the rendezvous,
defaults to min_workers is not specified.
timeout - total timeout within which next_rendezvous is expected to
succeed; a RendezvousTimeoutError is raised otherwise;
Defaults is 600 (10 minutes).
last_call_timeout - additional wait amount ("last call") after
min number of workers has been reached.
Defaults to 30 seconds.
etcd_prefix - path prefix (from etcd root), inside which all
etcd nodes will be created.
Default is "/torchelastic/p2p".
protocol - http (default) or https to access etcd.
cacert - CA cert to access etcd, only makes sense with https.
cert - client cert to access etcd, only makes sense with https.
key - client key to access etcd, only makes sense with https.
"""
client = _create_etcd_client(params)
etcd_prefix = params.get("etcd_prefix", "/torchelastic/p2p")
rdzv = EtcdRendezvous(
client=client,
prefix=etcd_prefix,
run_id=params.run_id,
num_min_workers=params.min_nodes,
num_max_workers=params.max_nodes,
timeout=params.get_as_int("timeout", _DEFAULT_TIMEOUT),
last_call_timeout=params.get_as_int("last_call_timeout", _DEFAULT_LAST_CALL_TIMEOUT),
)
return EtcdRendezvousHandler(rdzv_impl=rdzv)