Source code for torch.distributions.exponential
from numbers import Number
import torch
from torch.distributions import constraints
from torch.distributions.exp_family import ExponentialFamily
from torch.distributions.utils import broadcast_all
[docs]class Exponential(ExponentialFamily):
r"""
Creates a Exponential distribution parameterized by :attr:`rate`.
Example::
>>> m = Exponential(torch.tensor([1.0]))
>>> m.sample() # Exponential distributed with rate=1
tensor([ 0.1046])
Args:
rate (float or Tensor): rate = 1 / scale of the distribution
"""
arg_constraints = {'rate': constraints.positive}
support = constraints.nonnegative
has_rsample = True
_mean_carrier_measure = 0
@property
def mean(self):
return self.rate.reciprocal()
@property
def stddev(self):
return self.rate.reciprocal()
@property
def variance(self):
return self.rate.pow(-2)
def __init__(self, rate, validate_args=None):
self.rate, = broadcast_all(rate)
batch_shape = torch.Size() if isinstance(rate, Number) else self.rate.size()
super(Exponential, self).__init__(batch_shape, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Exponential, _instance)
batch_shape = torch.Size(batch_shape)
new.rate = self.rate.expand(batch_shape)
super(Exponential, new).__init__(batch_shape, validate_args=False)
new._validate_args = self._validate_args
return new
[docs] def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
if torch._C._get_tracing_state():
# [JIT WORKAROUND] lack of support for ._exponential()
u = torch.rand(shape, dtype=self.rate.dtype, device=self.rate.device)
return -(-u).log1p() / self.rate
return self.rate.new(shape).exponential_() / self.rate
[docs] def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
return self.rate.log() - self.rate * value
[docs] def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return 1 - torch.exp(-self.rate * value)
@property
def _natural_params(self):
return (-self.rate, )
def _log_normalizer(self, x):
return -torch.log(-x)