Source code for torch.nn.quantized.modules.batchnorm
import torch
import torch.nn.quantized.functional
import torch.nn.intrinsic as nni
[docs]class BatchNorm2d(torch.nn.BatchNorm2d):
r"""This is the quantized version of :class:`~torch.nn.BatchNorm2d`.
"""
def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None) -> None:
factory_kwargs = {'device': device, 'dtype': dtype}
super(BatchNorm2d, self).__init__(num_features, **factory_kwargs)
self.eps = eps
self.register_buffer('scale', torch.tensor(1.0, **factory_kwargs))
self.register_buffer('zero_point', torch.tensor(0, **factory_kwargs))
def forward(self, input):
return torch.ops.quantized.batch_norm2d(input, self.weight, self.bias, self.running_mean,
self.running_var, self.eps, self.scale, self.zero_point)
def _get_name(self):
return 'QuantizedBatchNorm2d'
@classmethod
def from_float(cls, mod):
activation_post_process = mod.activation_post_process
if type(mod) == nni.BNReLU2d:
mod = mod[0]
scale, zero_point = activation_post_process.calculate_qparams()
new_mod = cls(mod.num_features, mod.eps)
new_mod.weight = mod.weight
new_mod.bias = mod.bias
new_mod.running_mean = mod.running_mean
new_mod.running_var = mod.running_var
new_mod.scale = scale
new_mod.zero_point = zero_point
return new_mod
# TODO: dedup with BatchNorm2d
[docs]class BatchNorm3d(torch.nn.BatchNorm3d):
r"""This is the quantized version of :class:`~torch.nn.BatchNorm3d`.
"""
def __init__(self, num_features, eps=1e-5, momentum=0.1, device=None, dtype=None):
factory_kwargs = {'device': device, 'dtype': dtype}
super(BatchNorm3d, self).__init__(num_features, **factory_kwargs)
self.eps = eps
self.register_buffer('scale', torch.tensor(1.0, **factory_kwargs))
self.register_buffer('zero_point', torch.tensor(0, **factory_kwargs))
def forward(self, input):
return torch.ops.quantized.batch_norm3d(input, self.weight, self.bias, self.running_mean,
self.running_var, self.eps, self.scale, self.zero_point)
def _get_name(self):
return 'QuantizedBatchNorm3d'
@classmethod
def from_float(cls, mod):
activation_post_process = mod.activation_post_process
if type(mod) == nni.BNReLU3d:
mod = mod[0]
scale, zero_point = activation_post_process.calculate_qparams()
new_mod = cls(mod.num_features, mod.eps)
new_mod.weight = mod.weight
new_mod.bias = mod.bias
new_mod.running_mean = mod.running_mean
new_mod.running_var = mod.running_var
new_mod.scale = scale
new_mod.zero_point = zero_point
return new_mod