Source code for torch.distributions.distribution
import torch
import warnings
from torch.distributions import constraints
from torch.distributions.utils import lazy_property
from torch.types import _size
from typing import Dict, Optional, Any, Tuple
__all__ = ['Distribution']
[docs]class Distribution:
r"""
Distribution is the abstract base class for probability distributions.
"""
has_rsample = False
has_enumerate_support = False
_validate_args = __debug__
[docs] @staticmethod
def set_default_validate_args(value: bool) -> None:
"""
Sets whether validation is enabled or disabled.
The default behavior mimics Python's ``assert`` statement: validation
is on by default, but is disabled if Python is run in optimized mode
(via ``python -O``). Validation may be expensive, so you may want to
disable it once a model is working.
Args:
value (bool): Whether to enable validation.
"""
if value not in [True, False]:
raise ValueError
Distribution._validate_args = value
def __init__(
self,
batch_shape: torch.Size = torch.Size(),
event_shape: torch.Size = torch.Size(),
validate_args: Optional[bool] = None,
):
self._batch_shape = batch_shape
self._event_shape = event_shape
if validate_args is not None:
self._validate_args = validate_args
if self._validate_args:
try:
arg_constraints = self.arg_constraints
except NotImplementedError:
arg_constraints = {}
warnings.warn(f'{self.__class__} does not define `arg_constraints`. ' +
'Please set `arg_constraints = {}` or initialize the distribution ' +
'with `validate_args=False` to turn off validation.')
for param, constraint in arg_constraints.items():
if constraints.is_dependent(constraint):
continue # skip constraints that cannot be checked
if param not in self.__dict__ and isinstance(getattr(type(self), param), lazy_property):
continue # skip checking lazily-constructed args
value = getattr(self, param)
valid = constraint.check(value)
if not valid.all():
raise ValueError(
f"Expected parameter {param} "
f"({type(value).__name__} of shape {tuple(value.shape)}) "
f"of distribution {repr(self)} "
f"to satisfy the constraint {repr(constraint)}, "
f"but found invalid values:\n{value}"
)
super().__init__()
[docs] def expand(self, batch_shape: torch.Size, _instance=None):
"""
Returns a new distribution instance (or populates an existing instance
provided by a derived class) with batch dimensions expanded to
`batch_shape`. This method calls :class:`~torch.Tensor.expand` on
the distribution's parameters. As such, this does not allocate new
memory for the expanded distribution instance. Additionally,
this does not repeat any args checking or parameter broadcasting in
`__init__.py`, when an instance is first created.
Args:
batch_shape (torch.Size): the desired expanded size.
_instance: new instance provided by subclasses that
need to override `.expand`.
Returns:
New distribution instance with batch dimensions expanded to
`batch_size`.
"""
raise NotImplementedError
@property
def batch_shape(self) -> torch.Size:
"""
Returns the shape over which parameters are batched.
"""
return self._batch_shape
@property
def event_shape(self) -> torch.Size:
"""
Returns the shape of a single sample (without batching).
"""
return self._event_shape
@property
def arg_constraints(self) -> Dict[str, constraints.Constraint]:
"""
Returns a dictionary from argument names to
:class:`~torch.distributions.constraints.Constraint` objects that
should be satisfied by each argument of this distribution. Args that
are not tensors need not appear in this dict.
"""
raise NotImplementedError
@property
def support(self) -> Optional[Any]:
"""
Returns a :class:`~torch.distributions.constraints.Constraint` object
representing this distribution's support.
"""
raise NotImplementedError
@property
def mean(self) -> torch.Tensor:
"""
Returns the mean of the distribution.
"""
raise NotImplementedError
@property
def mode(self) -> torch.Tensor:
"""
Returns the mode of the distribution.
"""
raise NotImplementedError(f"{self.__class__} does not implement mode")
@property
def variance(self) -> torch.Tensor:
"""
Returns the variance of the distribution.
"""
raise NotImplementedError
@property
def stddev(self) -> torch.Tensor:
"""
Returns the standard deviation of the distribution.
"""
return self.variance.sqrt()
[docs] def sample(self, sample_shape: torch.Size = torch.Size()) -> torch.Tensor:
"""
Generates a sample_shape shaped sample or sample_shape shaped batch of
samples if the distribution parameters are batched.
"""
with torch.no_grad():
return self.rsample(sample_shape)
[docs] def rsample(self, sample_shape: torch.Size = torch.Size()) -> torch.Tensor:
"""
Generates a sample_shape shaped reparameterized sample or sample_shape
shaped batch of reparameterized samples if the distribution parameters
are batched.
"""
raise NotImplementedError
[docs] def sample_n(self, n: int) -> torch.Tensor:
"""
Generates n samples or n batches of samples if the distribution
parameters are batched.
"""
warnings.warn('sample_n will be deprecated. Use .sample((n,)) instead', UserWarning)
return self.sample(torch.Size((n,)))
[docs] def log_prob(self, value: torch.Tensor) -> torch.Tensor:
"""
Returns the log of the probability density/mass function evaluated at
`value`.
Args:
value (Tensor):
"""
raise NotImplementedError
[docs] def cdf(self, value: torch.Tensor) -> torch.Tensor:
"""
Returns the cumulative density/mass function evaluated at
`value`.
Args:
value (Tensor):
"""
raise NotImplementedError
[docs] def icdf(self, value: torch.Tensor) -> torch.Tensor:
"""
Returns the inverse cumulative density/mass function evaluated at
`value`.
Args:
value (Tensor):
"""
raise NotImplementedError
[docs] def enumerate_support(self, expand: bool = True) -> torch.Tensor:
"""
Returns tensor containing all values supported by a discrete
distribution. The result will enumerate over dimension 0, so the shape
of the result will be `(cardinality,) + batch_shape + event_shape`
(where `event_shape = ()` for univariate distributions).
Note that this enumerates over all batched tensors in lock-step
`[[0, 0], [1, 1], ...]`. With `expand=False`, enumeration happens
along dim 0, but with the remaining batch dimensions being
singleton dimensions, `[[0], [1], ..`.
To iterate over the full Cartesian product use
`itertools.product(m.enumerate_support())`.
Args:
expand (bool): whether to expand the support over the
batch dims to match the distribution's `batch_shape`.
Returns:
Tensor iterating over dimension 0.
"""
raise NotImplementedError
[docs] def entropy(self) -> torch.Tensor:
"""
Returns entropy of distribution, batched over batch_shape.
Returns:
Tensor of shape batch_shape.
"""
raise NotImplementedError
[docs] def perplexity(self) -> torch.Tensor:
"""
Returns perplexity of distribution, batched over batch_shape.
Returns:
Tensor of shape batch_shape.
"""
return torch.exp(self.entropy())
def _extended_shape(self, sample_shape: _size = torch.Size()) -> Tuple[int, ...]:
"""
Returns the size of the sample returned by the distribution, given
a `sample_shape`. Note, that the batch and event shapes of a distribution
instance are fixed at the time of construction. If this is empty, the
returned shape is upcast to (1,).
Args:
sample_shape (torch.Size): the size of the sample to be drawn.
"""
if not isinstance(sample_shape, torch.Size):
sample_shape = torch.Size(sample_shape)
return torch.Size(sample_shape + self._batch_shape + self._event_shape)
def _validate_sample(self, value: torch.Tensor) -> None:
"""
Argument validation for distribution methods such as `log_prob`,
`cdf` and `icdf`. The rightmost dimensions of a value to be
scored via these methods must agree with the distribution's batch
and event shapes.
Args:
value (Tensor): the tensor whose log probability is to be
computed by the `log_prob` method.
Raises
ValueError: when the rightmost dimensions of `value` do not match the
distribution's batch and event shapes.
"""
if not isinstance(value, torch.Tensor):
raise ValueError('The value argument to log_prob must be a Tensor')
event_dim_start = len(value.size()) - len(self._event_shape)
if value.size()[event_dim_start:] != self._event_shape:
raise ValueError('The right-most size of value must match event_shape: {} vs {}.'.
format(value.size(), self._event_shape))
actual_shape = value.size()
expected_shape = self._batch_shape + self._event_shape
for i, j in zip(reversed(actual_shape), reversed(expected_shape)):
if i != 1 and j != 1 and i != j:
raise ValueError('Value is not broadcastable with batch_shape+event_shape: {} vs {}.'.
format(actual_shape, expected_shape))
try:
support = self.support
except NotImplementedError:
warnings.warn(f'{self.__class__} does not define `support` to enable ' +
'sample validation. Please initialize the distribution with ' +
'`validate_args=False` to turn off validation.')
return
assert support is not None
valid = support.check(value)
if not valid.all():
raise ValueError(
"Expected value argument "
f"({type(value).__name__} of shape {tuple(value.shape)}) "
f"to be within the support ({repr(support)}) "
f"of the distribution {repr(self)}, "
f"but found invalid values:\n{value}"
)
def _get_checked_instance(self, cls, _instance=None):
if _instance is None and type(self).__init__ != cls.__init__:
raise NotImplementedError("Subclass {} of {} that defines a custom __init__ method "
"must also define a custom .expand() method.".
format(self.__class__.__name__, cls.__name__))
return self.__new__(type(self)) if _instance is None else _instance
def __repr__(self) -> str:
param_names = [k for k, _ in self.arg_constraints.items() if k in self.__dict__]
args_string = ', '.join(['{}: {}'.format(p, self.__dict__[p]
if self.__dict__[p].numel() == 1
else self.__dict__[p].size()) for p in param_names])
return self.__class__.__name__ + '(' + args_string + ')'