Source code for torch.distributions.pareto
from torch.distributions import constraints
from torch.distributions.exponential import Exponential
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AffineTransform, ExpTransform
from torch.distributions.utils import broadcast_all
__all__ = ['Pareto']
[docs]class Pareto(TransformedDistribution):
r"""
Samples from a Pareto Type 1 distribution.
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterinistic")
>>> m = Pareto(torch.tensor([1.0]), torch.tensor([1.0]))
>>> m.sample() # sample from a Pareto distribution with scale=1 and alpha=1
tensor([ 1.5623])
Args:
scale (float or Tensor): Scale parameter of the distribution
alpha (float or Tensor): Shape parameter of the distribution
"""
arg_constraints = {'alpha': constraints.positive, 'scale': constraints.positive}
def __init__(self, scale, alpha, validate_args=None):
self.scale, self.alpha = broadcast_all(scale, alpha)
base_dist = Exponential(self.alpha, validate_args=validate_args)
transforms = [ExpTransform(), AffineTransform(loc=0, scale=self.scale)]
super().__init__(base_dist, transforms, validate_args=validate_args)
[docs] def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(Pareto, _instance)
new.scale = self.scale.expand(batch_shape)
new.alpha = self.alpha.expand(batch_shape)
return super().expand(batch_shape, _instance=new)
@property
def mean(self):
# mean is inf for alpha <= 1
a = self.alpha.clamp(min=1)
return a * self.scale / (a - 1)
@property
def mode(self):
return self.scale
@property
def variance(self):
# var is inf for alpha <= 2
a = self.alpha.clamp(min=2)
return self.scale.pow(2) * a / ((a - 1).pow(2) * (a - 2))
@constraints.dependent_property(is_discrete=False, event_dim=0)
def support(self):
return constraints.greater_than_eq(self.scale)