torch.nn.utils.clip_grad_norm_¶
- torch.nn.utils.clip_grad_norm_(parameters, max_norm, norm_type=2.0, error_if_nonfinite=False, foreach=None)[source]¶
Clips gradient norm of an iterable of parameters.
The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place.
- Parameters:
parameters (Iterable[Tensor] or Tensor) – an iterable of Tensors or a single Tensor that will have gradients normalized
max_norm (float) – max norm of the gradients
norm_type (float) – type of the used p-norm. Can be
'inf'
for infinity norm.error_if_nonfinite (bool) – if True, an error is thrown if the total norm of the gradients from
parameters
isnan
,inf
, or-inf
. Default: False (will switch to True in the future)foreach (bool) – use the faster foreach-based implementation. If
None
, use the foreach implementation for CUDA and CPU native tensors and silently fall back to the slow implementation for other device types. Default:None
- Returns:
Total norm of the parameter gradients (viewed as a single vector).
- Return type: