Shortcuts

torch.vander

torch.vander(x, N=None, increasing=False) Tensor

Generates a Vandermonde matrix.

The columns of the output matrix are elementwise powers of the input vector x(N1),x(N2),...,x0x^{(N-1)}, x^{(N-2)}, ..., x^0. If increasing is True, the order of the columns is reversed x0,x1,...,x(N1)x^0, x^1, ..., x^{(N-1)}. Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde.

Parameters:
  • x (Tensor) – 1-D input tensor.

  • N (int, optional) – Number of columns in the output. If N is not specified, a square array is returned (N=len(x))(N = len(x)).

  • increasing (bool, optional) – Order of the powers of the columns. If True, the powers increase from left to right, if False (the default) they are reversed.

Returns:

Vandermonde matrix. If increasing is False, the first column is x(N1)x^{(N-1)}, the second x(N2)x^{(N-2)} and so forth. If increasing is True, the columns are x0,x1,...,x(N1)x^0, x^1, ..., x^{(N-1)}.

Return type:

Tensor

Example:

>>> x = torch.tensor([1, 2, 3, 5])
>>> torch.vander(x)
tensor([[  1,   1,   1,   1],
        [  8,   4,   2,   1],
        [ 27,   9,   3,   1],
        [125,  25,   5,   1]])
>>> torch.vander(x, N=3)
tensor([[ 1,  1,  1],
        [ 4,  2,  1],
        [ 9,  3,  1],
        [25,  5,  1]])
>>> torch.vander(x, N=3, increasing=True)
tensor([[ 1,  1,  1],
        [ 1,  2,  4],
        [ 1,  3,  9],
        [ 1,  5, 25]])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources