Source code for torch.distributed.checkpoint.filesystem
from abc import ABC, abstractmethod
import queue
import threading
import collections
from dataclasses import dataclass
import os
import dataclasses
import io
import pickle
from typing import List, Union, Dict, cast
import torch
from torch import Tensor
from torch.futures import Future
from pathlib import Path
from .metadata import (
Metadata,
MetadataIndex,
)
from .storage import (
StorageReader,
StorageWriter,
WriteResult,
)
from .planner import (
LoadItemType,
LoadPlanner,
LoadPlan,
SavePlan,
SavePlanner,
ReadItem,
WriteItem,
WriteItemType,
)
from .utils import _create_file_view
from torch.distributed._shard._utils import narrow_tensor_by_index
from torch._utils import _get_device_module
__all__ = [
"FileSystemWriter",
"FileSystemReader",
]
@dataclass
class _StorageInfo:
"""
This is the per entry storage info
"""
relative_path: str
offset: int
length: int
@dataclass
class _StoragePrefix:
prefix: str
DEFAULT_SUFFIX = ".distcp"
def _trim(tensor: torch.Tensor) -> torch.Tensor:
tensor = tensor.detach().cpu()
if tensor._typed_storage()._size() != tensor.numel():
tensor = tensor.clone()
return tensor
def _result_from_write_item(
item: WriteItem, size_in_bytes, storage_data
) -> WriteResult:
return WriteResult(
index=item.index, size_in_bytes=size_in_bytes, storage_data=storage_data
)
class _TensorLoader(ABC):
@abstractmethod
def add(self, size, obj):
pass
@abstractmethod
def start_loading(self):
pass
@abstractmethod
def values(self):
pass
class _SerialCpuLoader(_TensorLoader):
def __init__(self, resolve_fun):
self.resolve_fun = resolve_fun
self.items = []
def add(self, size, obj):
self.items.append((size, obj))
def start_loading(self):
pass
def values(self):
for _, obj in self.items:
tensor = self.resolve_fun(obj).detach()
tensor = tensor.cpu()
if tensor.storage().size() != tensor.numel():
tensor = tensor.clone()
yield (
tensor,
obj,
)
class _OverlappingCpuLoader(_TensorLoader):
def __init__(self, resolve_fun, stream=None, inflight_threshhold=1_000_000):
self.resolve_fun = resolve_fun
self.items = []
self.inflight_threshhold = inflight_threshhold
self.in_flight_data = 0
self.current_items: collections.deque = collections.deque()
self.idx = 0
self.started = False
self.device_type = stream.device_type if stream else torch.device("cuda").type
self.device_module = _get_device_module(self.device_type)
self.stream = stream or self.device_module.current_stream()
if self.stream != self.device_module.current_stream():
self.stream.wait_stream(self.device_module.current_stream())
@property
def _done(self):
return self.idx >= len(self.items)
def _drain(self):
drained = []
if self.in_flight_data >= self.inflight_threshhold:
self.stream.synchronize()
while self.in_flight_data >= self.inflight_threshhold:
val = self.current_items.popleft()
self.in_flight_data -= val[0].numel() * val[0].element_size()
drained.append(val)
return drained
def _refill(self):
with self.device_module.stream(self.stream):
while (
not self._done
and self.in_flight_data < self.inflight_threshhold
):
_, obj = self.items[self.idx]
self.idx += 1
tensor = self.resolve_fun(obj).detach()
if tensor.device.type == self.device_type:
tensor = tensor.to(device="cpu", non_blocking=True)
elif tensor.device == torch.device("cpu"):
if tensor.storage().size() != tensor.numel():
# this forces the tensor to be both contiguous and with minimal storage
tensor = tensor.clone()
self.current_items.append(
(
tensor,
obj,
)
)
self.in_flight_data += tensor.numel() * tensor.element_size()
def _finish(self):
assert self._done
if len(self.current_items) > 0:
self.stream.synchronize()
return self.current_items
def add(self, size, obj):
if self.started:
raise RuntimeError("cannot add items after loading started")
self.items.append((size, obj))
def start_loading(self):
if self.started:
return
self.started = True
self.items.sort(key=lambda x: x[0])
self._refill()
def values(self):
self.start_loading()
while not self._done:
drained = self._drain()
self._refill()
yield from drained
yield from self._finish()
def _item_size(item: WriteItem) -> int:
size = 1
assert item.tensor_data is not None
# can't use math.prod as PT needs to support older python
for s in item.tensor_data.size:
size *= s
dtype = item.tensor_data.properties.dtype
return size * torch._utils._element_size(dtype)
def _split_by_size_and_type(
bins, items: List[WriteItem]
) -> List[List[WriteItem]]:
if bins == 1:
return [items]
bytes_w = [wi for wi in items if wi.type == WriteItemType.BYTE_IO]
tensor_w = [wi for wi in items if wi.type != WriteItemType.BYTE_IO]
buckets: List[List[WriteItem]] = [[] for _ in range(bins)]
bucket_sizes = [0 for _ in range(bins)]
tensor_w.sort(key=_item_size, reverse=True)
for i, wi in enumerate(bytes_w):
buckets[i % bins].append(wi)
for wi in tensor_w:
# TODO replace with headq
idx = min(enumerate(bucket_sizes), key=lambda x: x[1])[0]
buckets[idx].append(wi)
bucket_sizes[idx] += _item_size(wi)
return buckets
def _write_item(stream, data, write_item, storage_key):
offset = stream.tell()
if write_item.type == WriteItemType.BYTE_IO:
assert isinstance(data, io.BytesIO)
stream.write(data.getbuffer())
else:
assert isinstance(data, torch.Tensor)
assert data.device == torch.device("cpu")
torch.save(data, stream)
length = stream.tell() - offset
return _result_from_write_item(
write_item, length, _StorageInfo(storage_key, offset, length)
)
def _write_files_from_queue(
file_queue: queue.Queue,
result_queue: queue.Queue,
planner: SavePlanner,
inflight_threshhold: int,
use_fsync: bool,
):
try:
while True:
file_name, storage_key, write_items = file_queue.get_nowait()
loader: _TensorLoader
if torch.cuda.is_available() and inflight_threshhold > 0:
loader = _OverlappingCpuLoader(
lambda x: planner.resolve_data(x),
inflight_threshhold=inflight_threshhold,
)
else:
loader = _SerialCpuLoader(
lambda x: planner.resolve_data(x),
)
tensor_w = [
wi for wi in write_items if wi.type != WriteItemType.BYTE_IO
]
for write_item in tensor_w:
loader.add(_item_size(write_item), write_item)
loader.start_loading()
bytes_w = [
wi for wi in write_items if wi.type == WriteItemType.BYTE_IO
]
write_results = []
with open(file_name, "wb") as stream:
for write_item in bytes_w:
data = planner.resolve_data(write_item)
write_results.append(
_write_item(stream, data, write_item, storage_key)
)
for tensor, write_item in loader.values():
assert tensor.is_cpu
write_results.append(
_write_item(stream, tensor, write_item, storage_key)
)
if use_fsync:
os.fsync(stream.fileno())
result_queue.put(write_results)
except queue.Empty:
pass
[docs]class FileSystemWriter(StorageWriter):
"""
Basic implementation of StorageWriter using file IO.
This implementation makes the following assumptions and simplifications:
* The checkpoint path is an empty or non-existing directory.
* File creation is atomic
The checkpoint consist of one file per write request plus
a `.metadata` file with the serialized metadata.
"""
def __init__(
self,
path: Union[str, os.PathLike],
single_file_per_rank: bool = True,
sync_files: bool = True,
thread_count: int = 1,
per_thread_copy_ahead: int = 10_000_000,
) -> None:
"""
Initialize the writer pointing to `path`
Args:
path: directory where the checkpoint will be written to.
single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True.
sync_files : force files to be synced to permanent storage. Default to True.
thread_count: Number of IO threads to use to write. Default to 1.
per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb.
N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure.
"""
super().__init__()
self.path = Path(path)
self.single_file_per_rank = single_file_per_rank
self.sync_files = sync_files
self.thread_count = thread_count
self.per_thread_copy_ahead = per_thread_copy_ahead
def set_up_storage_writer(self, is_coordinator: bool) -> None:
pass
def prepare_local_plan(self, plan: SavePlan) -> SavePlan:
self.path.mkdir(parents=True, exist_ok=True)
return plan
def prepare_global_plan(
self, global_plan: List[SavePlan]
) -> List[SavePlan]:
new_plans = [
dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_"))
for i, plan in enumerate(global_plan)
]
return new_plans
def write_data(
self,
plan: SavePlan,
planner: SavePlanner,
) -> Future[List[WriteResult]]:
storage_plan: _StoragePrefix = plan.storage_data
file_count = 0
def gen_file():
nonlocal file_count
file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}"
file_count += 1
return file_name
file_queue: queue.Queue = queue.Queue()
if self.single_file_per_rank:
for bucket in _split_by_size_and_type(
self.thread_count, plan.items
):
file_name = gen_file()
file_queue.put((self.path / file_name, file_name, bucket))
else:
for item in plan.items:
file_name = gen_file()
file_queue.put((self.path / file_name, file_name, [item]))
result_queue: queue.Queue = queue.Queue()
threads = []
for _ in range(1, self.thread_count):
t = threading.Thread(
target=_write_files_from_queue,
args=(
file_queue,
result_queue,
planner,
self.per_thread_copy_ahead,
self.sync_files,
),
)
t.start()
threads.append(t)
_write_files_from_queue(
file_queue=file_queue,
result_queue=result_queue,
planner=planner,
inflight_threshhold=self.per_thread_copy_ahead,
use_fsync=self.sync_files,
)
for t in threads:
t.join()
res = []
try:
while True:
res += result_queue.get_nowait()
except queue.Empty:
pass
fut: Future[List[WriteResult]] = Future()
fut.set_result(res)
return fut
def finish(
self, metadata: Metadata, results: List[List[WriteResult]]
) -> None:
storage_md = dict()
for wr_list in results:
storage_md.update({wr.index: wr.storage_data for wr in wr_list})
metadata.storage_data = storage_md
with (self.path / ".metadata.tmp").open("wb") as metadata_file:
pickle.dump(metadata, metadata_file)
os.fsync(metadata_file.fileno())
(self.path / ".metadata.tmp").rename(self.path / ".metadata")
[docs]class FileSystemReader(StorageReader):
def __init__(self, path: Union[str, os.PathLike]) -> None:
super().__init__()
self.path = Path(path)
self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict()
def _slice_file(self, file, sinfo: _StorageInfo):
return _create_file_view(file, sinfo.offset, sinfo.length)
def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]:
# group requests by file
per_file: Dict[str, List[ReadItem]] = dict()
for read_item in plan.items:
item_md = self.storage_data[read_item.storage_index]
path = item_md.relative_path
per_file.setdefault(path, []).append(read_item)
for relative_path, reqs in per_file.items():
with (self.path / relative_path).open("rb") as file:
# TODO sort by offset and cache the reading
for req in reqs:
item_md = self.storage_data[req.storage_index]
file_slice = self._slice_file(file, item_md)
if req.type == LoadItemType.BYTE_IO:
bytes = io.BytesIO(file_slice.read(item_md.length))
bytes.seek(0)
planner.load_bytes(req, bytes)
else:
tensor = cast(
Tensor, torch.load(file_slice, map_location="cpu")
)
tensor = narrow_tensor_by_index(
tensor, req.storage_offsets, req.lengths
)
target_tensor = planner.resolve_tensor(req).detach()
assert (
target_tensor.size() == tensor.size()
), f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
target_tensor.copy_(tensor)
planner.commit_tensor(req, target_tensor)
fut: Future = Future()
fut.set_result(None)
return fut
# Implementing the abstract function in StorageReader
def read_metadata(self) -> Metadata:
with (self.path / ".metadata").open("rb") as metadata_file:
return pickle.load(metadata_file)
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
self.storage_data = metadata.storage_data
assert self.storage_data is not None
def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
return plan
def prepare_global_plan(
self, global_plan: List[LoadPlan]
) -> List[LoadPlan]:
return global_plan