Shortcuts

Source code for torch.distributions.transforms

import functools
import math
import numbers
import operator
import weakref
from typing import List

import torch
import torch.nn.functional as F
from torch.distributions import constraints
from torch.distributions.utils import (
    _sum_rightmost,
    broadcast_all,
    lazy_property,
    tril_matrix_to_vec,
    vec_to_tril_matrix,
)
from torch.nn.functional import pad, softplus

__all__ = [
    "AbsTransform",
    "AffineTransform",
    "CatTransform",
    "ComposeTransform",
    "CorrCholeskyTransform",
    "CumulativeDistributionTransform",
    "ExpTransform",
    "IndependentTransform",
    "LowerCholeskyTransform",
    "PositiveDefiniteTransform",
    "PowerTransform",
    "ReshapeTransform",
    "SigmoidTransform",
    "SoftplusTransform",
    "TanhTransform",
    "SoftmaxTransform",
    "StackTransform",
    "StickBreakingTransform",
    "Transform",
    "identity_transform",
]


[docs]class Transform: """ Abstract class for invertable transformations with computable log det jacobians. They are primarily used in :class:`torch.distributions.TransformedDistribution`. Caching is useful for transforms whose inverses are either expensive or numerically unstable. Note that care must be taken with memoized values since the autograd graph may be reversed. For example while the following works with or without caching:: y = t(x) t.log_abs_det_jacobian(x, y).backward() # x will receive gradients. However the following will error when caching due to dependency reversal:: y = t(x) z = t.inv(y) grad(z.sum(), [y]) # error because z is x Derived classes should implement one or both of :meth:`_call` or :meth:`_inverse`. Derived classes that set `bijective=True` should also implement :meth:`log_abs_det_jacobian`. Args: cache_size (int): Size of cache. If zero, no caching is done. If one, the latest single value is cached. Only 0 and 1 are supported. Attributes: domain (:class:`~torch.distributions.constraints.Constraint`): The constraint representing valid inputs to this transform. codomain (:class:`~torch.distributions.constraints.Constraint`): The constraint representing valid outputs to this transform which are inputs to the inverse transform. bijective (bool): Whether this transform is bijective. A transform ``t`` is bijective iff ``t.inv(t(x)) == x`` and ``t(t.inv(y)) == y`` for every ``x`` in the domain and ``y`` in the codomain. Transforms that are not bijective should at least maintain the weaker pseudoinverse properties ``t(t.inv(t(x)) == t(x)`` and ``t.inv(t(t.inv(y))) == t.inv(y)``. sign (int or Tensor): For bijective univariate transforms, this should be +1 or -1 depending on whether transform is monotone increasing or decreasing. """ bijective = False domain: constraints.Constraint codomain: constraints.Constraint def __init__(self, cache_size=0): self._cache_size = cache_size self._inv = None if cache_size == 0: pass # default behavior elif cache_size == 1: self._cached_x_y = None, None else: raise ValueError("cache_size must be 0 or 1") super().__init__() def __getstate__(self): state = self.__dict__.copy() state["_inv"] = None return state @property def event_dim(self): if self.domain.event_dim == self.codomain.event_dim: return self.domain.event_dim raise ValueError("Please use either .domain.event_dim or .codomain.event_dim") @property def inv(self): """ Returns the inverse :class:`Transform` of this transform. This should satisfy ``t.inv.inv is t``. """ inv = None if self._inv is not None: inv = self._inv() if inv is None: inv = _InverseTransform(self) self._inv = weakref.ref(inv) return inv @property def sign(self): """ Returns the sign of the determinant of the Jacobian, if applicable. In general this only makes sense for bijective transforms. """ raise NotImplementedError def with_cache(self, cache_size=1): if self._cache_size == cache_size: return self if type(self).__init__ is Transform.__init__: return type(self)(cache_size=cache_size) raise NotImplementedError(f"{type(self)}.with_cache is not implemented") def __eq__(self, other): return self is other def __ne__(self, other): # Necessary for Python2 return not self.__eq__(other) def __call__(self, x): """ Computes the transform `x => y`. """ if self._cache_size == 0: return self._call(x) x_old, y_old = self._cached_x_y if x is x_old: return y_old y = self._call(x) self._cached_x_y = x, y return y def _inv_call(self, y): """ Inverts the transform `y => x`. """ if self._cache_size == 0: return self._inverse(y) x_old, y_old = self._cached_x_y if y is y_old: return x_old x = self._inverse(y) self._cached_x_y = x, y return x def _call(self, x): """ Abstract method to compute forward transformation. """ raise NotImplementedError def _inverse(self, y): """ Abstract method to compute inverse transformation. """ raise NotImplementedError
[docs] def log_abs_det_jacobian(self, x, y): """ Computes the log det jacobian `log |dy/dx|` given input and output. """ raise NotImplementedError
def __repr__(self): return self.__class__.__name__ + "()"
[docs] def forward_shape(self, shape): """ Infers the shape of the forward computation, given the input shape. Defaults to preserving shape. """ return shape
[docs] def inverse_shape(self, shape): """ Infers the shapes of the inverse computation, given the output shape. Defaults to preserving shape. """ return shape
class _InverseTransform(Transform): """ Inverts a single :class:`Transform`. This class is private; please instead use the ``Transform.inv`` property. """ def __init__(self, transform: Transform): super().__init__(cache_size=transform._cache_size) self._inv: Transform = transform @constraints.dependent_property(is_discrete=False) def domain(self): assert self._inv is not None return self._inv.codomain @constraints.dependent_property(is_discrete=False) def codomain(self): assert self._inv is not None return self._inv.domain @property def bijective(self): assert self._inv is not None return self._inv.bijective @property def sign(self): assert self._inv is not None return self._inv.sign @property def inv(self): return self._inv def with_cache(self, cache_size=1): assert self._inv is not None return self.inv.with_cache(cache_size).inv def __eq__(self, other): if not isinstance(other, _InverseTransform): return False assert self._inv is not None return self._inv == other._inv def __repr__(self): return f"{self.__class__.__name__}({repr(self._inv)})" def __call__(self, x): assert self._inv is not None return self._inv._inv_call(x) def log_abs_det_jacobian(self, x, y): assert self._inv is not None return -self._inv.log_abs_det_jacobian(y, x) def forward_shape(self, shape): return self._inv.inverse_shape(shape) def inverse_shape(self, shape): return self._inv.forward_shape(shape)
[docs]class ComposeTransform(Transform): """ Composes multiple transforms in a chain. The transforms being composed are responsible for caching. Args: parts (list of :class:`Transform`): A list of transforms to compose. cache_size (int): Size of cache. If zero, no caching is done. If one, the latest single value is cached. Only 0 and 1 are supported. """ def __init__(self, parts: List[Transform], cache_size=0): if cache_size: parts = [part.with_cache(cache_size) for part in parts] super().__init__(cache_size=cache_size) self.parts = parts def __eq__(self, other): if not isinstance(other, ComposeTransform): return False return self.parts == other.parts @constraints.dependent_property(is_discrete=False) def domain(self): if not self.parts: return constraints.real domain = self.parts[0].domain # Adjust event_dim to be maximum among all parts. event_dim = self.parts[-1].codomain.event_dim for part in reversed(self.parts): event_dim += part.domain.event_dim - part.codomain.event_dim event_dim = max(event_dim, part.domain.event_dim) assert event_dim >= domain.event_dim if event_dim > domain.event_dim: domain = constraints.independent(domain, event_dim - domain.event_dim) return domain @constraints.dependent_property(is_discrete=False) def codomain(self): if not self.parts: return constraints.real codomain = self.parts[-1].codomain # Adjust event_dim to be maximum among all parts. event_dim = self.parts[0].domain.event_dim for part in self.parts: event_dim += part.codomain.event_dim - part.domain.event_dim event_dim = max(event_dim, part.codomain.event_dim) assert event_dim >= codomain.event_dim if event_dim > codomain.event_dim: codomain = constraints.independent(codomain, event_dim - codomain.event_dim) return codomain @lazy_property def bijective(self): return all(p.bijective for p in self.parts) @lazy_property def sign(self): sign = 1 for p in self.parts: sign = sign * p.sign return sign @property def inv(self): inv = None if self._inv is not None: inv = self._inv() if inv is None: inv = ComposeTransform([p.inv for p in reversed(self.parts)]) self._inv = weakref.ref(inv) inv._inv = weakref.ref(self) return inv def with_cache(self, cache_size=1): if self._cache_size == cache_size: return self return ComposeTransform(self.parts, cache_size=cache_size) def __call__(self, x): for part in self.parts: x = part(x) return x def log_abs_det_jacobian(self, x, y): if not self.parts: return torch.zeros_like(x) # Compute intermediates. This will be free if parts[:-1] are all cached. xs = [x] for part in self.parts[:-1]: xs.append(part(xs[-1])) xs.append(y) terms = [] event_dim = self.domain.event_dim for part, x, y in zip(self.parts, xs[:-1], xs[1:]): terms.append( _sum_rightmost( part.log_abs_det_jacobian(x, y), event_dim - part.domain.event_dim ) ) event_dim += part.codomain.event_dim - part.domain.event_dim return functools.reduce(operator.add, terms) def forward_shape(self, shape): for part in self.parts: shape = part.forward_shape(shape) return shape def inverse_shape(self, shape): for part in reversed(self.parts): shape = part.inverse_shape(shape) return shape def __repr__(self): fmt_string = self.__class__.__name__ + "(\n " fmt_string += ",\n ".join([p.__repr__() for p in self.parts]) fmt_string += "\n)" return fmt_string
identity_transform = ComposeTransform([])
[docs]class IndependentTransform(Transform): """ Wrapper around another transform to treat ``reinterpreted_batch_ndims``-many extra of the right most dimensions as dependent. This has no effect on the forward or backward transforms, but does sum out ``reinterpreted_batch_ndims``-many of the rightmost dimensions in :meth:`log_abs_det_jacobian`. Args: base_transform (:class:`Transform`): A base transform. reinterpreted_batch_ndims (int): The number of extra rightmost dimensions to treat as dependent. """ def __init__(self, base_transform, reinterpreted_batch_ndims, cache_size=0): super().__init__(cache_size=cache_size) self.base_transform = base_transform.with_cache(cache_size) self.reinterpreted_batch_ndims = reinterpreted_batch_ndims def with_cache(self, cache_size=1): if self._cache_size == cache_size: return self return IndependentTransform( self.base_transform, self.reinterpreted_batch_ndims, cache_size=cache_size ) @constraints.dependent_property(is_discrete=False) def domain(self): return constraints.independent( self.base_transform.domain, self.reinterpreted_batch_ndims ) @constraints.dependent_property(is_discrete=False) def codomain(self): return constraints.independent( self.base_transform.codomain, self.reinterpreted_batch_ndims ) @property def bijective(self): return self.base_transform.bijective @property def sign(self): return self.base_transform.sign def _call(self, x): if x.dim() < self.domain.event_dim: raise ValueError("Too few dimensions on input") return self.base_transform(x) def _inverse(self, y): if y.dim() < self.codomain.event_dim: raise ValueError("Too few dimensions on input") return self.base_transform.inv(y) def log_abs_det_jacobian(self, x, y): result = self.base_transform.log_abs_det_jacobian(x, y) result = _sum_rightmost(result, self.reinterpreted_batch_ndims) return result def __repr__(self): return f"{self.__class__.__name__}({repr(self.base_transform)}, {self.reinterpreted_batch_ndims})" def forward_shape(self, shape): return self.base_transform.forward_shape(shape) def inverse_shape(self, shape): return self.base_transform.inverse_shape(shape)
[docs]class ReshapeTransform(Transform): """ Unit Jacobian transform to reshape the rightmost part of a tensor. Note that ``in_shape`` and ``out_shape`` must have the same number of elements, just as for :meth:`torch.Tensor.reshape`. Arguments: in_shape (torch.Size): The input event shape. out_shape (torch.Size): The output event shape. """ bijective = True def __init__(self, in_shape, out_shape, cache_size=0): self.in_shape = torch.Size(in_shape) self.out_shape = torch.Size(out_shape) if self.in_shape.numel() != self.out_shape.numel(): raise ValueError("in_shape, out_shape have different numbers of elements") super().__init__(cache_size=cache_size) @constraints.dependent_property def domain(self): return constraints.independent(constraints.real, len(self.in_shape)) @constraints.dependent_property def codomain(self): return constraints.independent(constraints.real, len(self.out_shape)) def with_cache(self, cache_size=1): if self._cache_size == cache_size: return self return ReshapeTransform(self.in_shape, self.out_shape, cache_size=cache_size) def _call(self, x): batch_shape = x.shape[: x.dim() - len(self.in_shape)] return x.reshape(batch_shape + self.out_shape) def _inverse(self, y): batch_shape = y.shape[: y.dim() - len(self.out_shape)] return y.reshape(batch_shape + self.in_shape) def log_abs_det_jacobian(self, x, y): batch_shape = x.shape[: x.dim() - len(self.in_shape)] return x.new_zeros(batch_shape) def forward_shape(self, shape): if len(shape) < len(self.in_shape): raise ValueError("Too few dimensions on input") cut = len(shape) - len(self.in_shape) if shape[cut:] != self.in_shape: raise ValueError( f"Shape mismatch: expected {shape[cut:]} but got {self.in_shape}" ) return shape[:cut] + self.out_shape def inverse_shape(self, shape): if len(shape) < len(self.out_shape): raise ValueError("Too few dimensions on input") cut = len(shape) - len(self.out_shape) if shape[cut:] != self.out_shape: raise ValueError( f"Shape mismatch: expected {shape[cut:]} but got {self.out_shape}" ) return shape[:cut] + self.in_shape
[docs]class ExpTransform(Transform): r""" Transform via the mapping :math:`y = \exp(x)`. """ domain = constraints.real codomain = constraints.positive bijective = True sign = +1 def __eq__(self, other): return isinstance(other, ExpTransform) def _call(self, x): return x.exp() def _inverse(self, y): return y.log() def log_abs_det_jacobian(self, x, y): return x
[docs]class PowerTransform(Transform): r""" Transform via the mapping :math:`y = x^{\text{exponent}}`. """ domain = constraints.positive codomain = constraints.positive bijective = True sign = +1 def __init__(self, exponent, cache_size=0): super().__init__(cache_size=cache_size) (self.exponent,) = broadcast_all(exponent) def with_cache(self, cache_size=1): if self._cache_size == cache_size: return self return PowerTransform(self.exponent, cache_size=cache_size) def __eq__(self, other): if not isinstance(other, PowerTransform): return False return self.exponent.eq(other.exponent).all().item() def _call(self, x): return x.pow(self.exponent) def _inverse(self, y): return y.pow(1 / self.exponent) def log_abs_det_jacobian(self, x, y): return (self.exponent * y / x).abs().log() def forward_shape(self, shape): return torch.broadcast_shapes(shape, getattr(self.exponent, "shape", ())) def inverse_shape(self, shape): return torch.broadcast_shapes(shape, getattr(self.exponent, "shape", ()))
def _clipped_sigmoid(x): finfo = torch.finfo(x.dtype) return torch.clamp(torch.sigmoid(x), min=finfo.tiny, max=1.0 - finfo.eps)
[docs]class SigmoidTransform(Transform): r""" Transform via the mapping :math:`y = \frac{1}{1 + \exp(-x)}` and :math:`x = \text{logit}(y)`. """ domain = constraints.real codomain = constraints.unit_interval bijective = True sign = +1 def __eq__(self, other): return isinstance(other, SigmoidTransform) def _call(self, x): return _clipped_sigmoid(x) def _inverse(self, y): finfo = torch.finfo(y.dtype) y = y.clamp(min=finfo.tiny, max=1.0 - finfo.eps) return y.log() - (-y).log1p() def log_abs_det_jacobian(self, x, y): return -F.softplus(-x) - F.softplus(x)
[docs]class SoftplusTransform(Transform): r""" Transform via the mapping :math:`\text{Softplus}(x) = \log(1 + \exp(x))`. The implementation reverts to the linear function when :math:`x > 20`. """ domain = constraints.real codomain = constraints.positive bijective = True sign = +1 def __eq__(self, other): return isinstance(other, SoftplusTransform) def _call(self, x): return softplus(x) def _inverse(self, y): return (-y).expm1().neg().log() + y def log_abs_det_jacobian(self, x, y): return -softplus(-x)
[docs]class TanhTransform(Transform): r""" Transform via the mapping :math:`y = \tanh(x)`. It is equivalent to ``` ComposeTransform([AffineTransform(0., 2.), SigmoidTransform(), AffineTransform(-1., 2.)]) ``` However this might not be numerically stable, thus it is recommended to use `TanhTransform` instead. Note that one should use `cache_size=1` when it comes to `NaN/Inf` values. """ domain = constraints.real codomain = constraints.interval(-1.0, 1.0) bijective = True sign = +1 def __eq__(self, other): return isinstance(other, TanhTransform) def _call(self, x): return x.tanh() def _inverse(self, y): # We do not clamp to the boundary here as it may degrade the performance of certain algorithms. # one should use `cache_size=1` instead return torch.atanh(y) def log_abs_det_jacobian(self, x, y): # We use a formula that is more numerically stable, see details in the following link # https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/bijectors/tanh.py#L69-L80 return 2.0 * (math.log(2.0) - x - softplus(-2.0 * x))
[docs]class AbsTransform(Transform): r""" Transform via the mapping :math:`y = |x|`. """ domain = constraints.real codomain = constraints.positive def __eq__(self, other): return isinstance(other, AbsTransform) def _call(self, x): return x.abs() def _inverse(self, y): return y
[docs]class AffineTransform(Transform): r""" Transform via the pointwise affine mapping :math:`y = \text{loc} + \text{scale} \times x`. Args: loc (Tensor or float): Location parameter. scale (Tensor or float): Scale parameter. event_dim (int): Optional size of `event_shape`. This should be zero for univariate random variables, 1 for distributions over vectors, 2 for distributions over matrices, etc. """ bijective = True def __init__(self, loc, scale, event_dim=0, cache_size=0): super().__init__(cache_size=cache_size) self.loc = loc self.scale = scale self._event_dim = event_dim @property def event_dim(self): return self._event_dim @constraints.dependent_property(is_discrete=False) def domain(self): if self.event_dim == 0: return constraints.real return constraints.independent(constraints.real, self.event_dim) @constraints.dependent_property(is_discrete=False) def codomain(self): if self.event_dim == 0: return constraints.real return constraints.independent(constraints.real, self.event_dim) def with_cache(self, cache_size=1): if self._cache_size == cache_size: return self return AffineTransform( self.loc, self.scale, self.event_dim, cache_size=cache_size ) def __eq__(self, other): if not isinstance(other, AffineTransform): return False if isinstance(self.loc, numbers.Number) and isinstance( other.loc, numbers.Number ): if self.loc != other.loc: return False else: if not (self.loc == other.loc).all().item(): return False if isinstance(self.scale, numbers.Number) and isinstance( other.scale, numbers.Number ): if self.scale != other.scale: return False else: if not (self.scale == other.scale).all().item(): return False return True @property def sign(self): if isinstance(self.scale, numbers.Real): return 1 if float(self.scale) > 0 else -1 if float(self.scale) < 0 else 0 return self.scale.sign() def _call(self, x): return self.loc + self.scale * x def _inverse(self, y): return (y - self.loc) / self.scale def log_abs_det_jacobian(self, x, y): shape = x.shape scale = self.scale if isinstance(scale, numbers.Real): result = torch.full_like(x, math.log(abs(scale))) else: result = torch.abs(scale).log() if self.event_dim: result_size = result.size()[: -self.event_dim] + (-1,) result = result.view(result_size).sum(-1) shape = shape[: -self.event_dim] return result.expand(shape) def forward_shape(self, shape): return torch.broadcast_shapes( shape, getattr(self.loc, "shape", ()), getattr(self.scale, "shape", ()) ) def inverse_shape(self, shape): return torch.broadcast_shapes( shape, getattr(self.loc, "shape", ()), getattr(self.scale, "shape", ()) )
[docs]class CorrCholeskyTransform(Transform): r""" Transforms an uncontrained real vector :math:`x` with length :math:`D*(D-1)/2` into the Cholesky factor of a D-dimension correlation matrix. This Cholesky factor is a lower triangular matrix with positive diagonals and unit Euclidean norm for each row. The transform is processed as follows: 1. First we convert x into a lower triangular matrix in row order. 2. For each row :math:`X_i` of the lower triangular part, we apply a *signed* version of class :class:`StickBreakingTransform` to transform :math:`X_i` into a unit Euclidean length vector using the following steps: - Scales into the interval :math:`(-1, 1)` domain: :math:`r_i = \tanh(X_i)`. - Transforms into an unsigned domain: :math:`z_i = r_i^2`. - Applies :math:`s_i = StickBreakingTransform(z_i)`. - Transforms back into signed domain: :math:`y_i = sign(r_i) * \sqrt{s_i}`. """ domain = constraints.real_vector codomain = constraints.corr_cholesky bijective = True def _call(self, x): x = torch.tanh(x) eps = torch.finfo(x.dtype).eps x = x.clamp(min=-1 + eps, max=1 - eps) r = vec_to_tril_matrix(x, diag=-1) # apply stick-breaking on the squared values # Note that y = sign(r) * sqrt(z * z1m_cumprod) # = (sign(r) * sqrt(z)) * sqrt(z1m_cumprod) = r * sqrt(z1m_cumprod) z = r**2 z1m_cumprod_sqrt = (1 - z).sqrt().cumprod(-1) # Diagonal elements must be 1. r = r + torch.eye(r.shape[-1], dtype=r.dtype, device=r.device) y = r * pad(z1m_cumprod_sqrt[..., :-1], [1, 0], value=1) return y def _inverse(self, y): # inverse stick-breaking # See: https://mc-stan.org/docs/2_18/reference-manual/cholesky-factors-of-correlation-matrices-1.html y_cumsum = 1 - torch.cumsum(y * y, dim=-1) y_cumsum_shifted = pad(y_cumsum[..., :-1], [1, 0], value=1) y_vec = tril_matrix_to_vec(y, diag=-1) y_cumsum_vec = tril_matrix_to_vec(y_cumsum_shifted, diag=-1) t = y_vec / (y_cumsum_vec).sqrt() # inverse of tanh x = (t.log1p() - t.neg().log1p()) / 2 return x def log_abs_det_jacobian(self, x, y, intermediates=None): # Because domain and codomain are two spaces with different dimensions, determinant of # Jacobian is not well-defined. We return `log_abs_det_jacobian` of `x` and the # flattened lower triangular part of `y`. # See: https://mc-stan.org/docs/2_18/reference-manual/cholesky-factors-of-correlation-matrices-1.html y1m_cumsum = 1 - (y * y).cumsum(dim=-1) # by taking diagonal=-2, we don't need to shift z_cumprod to the right # also works for 2 x 2 matrix y1m_cumsum_tril = tril_matrix_to_vec(y1m_cumsum, diag=-2) stick_breaking_logdet = 0.5 * (y1m_cumsum_tril).log().sum(-1) tanh_logdet = -2 * (x + softplus(-2 * x) - math.log(2.0)).sum(dim=-1) return stick_breaking_logdet + tanh_logdet def forward_shape(self, shape): # Reshape from (..., N) to (..., D, D). if len(shape) < 1: raise ValueError("Too few dimensions on input") N = shape[-1] D = round((0.25 + 2 * N) ** 0.5 + 0.5) if D * (D - 1) // 2 != N: raise ValueError("Input is not a flattend lower-diagonal number") return shape[:-1] + (D, D) def inverse_shape(self, shape): # Reshape from (..., D, D) to (..., N). if len(shape) < 2: raise ValueError("Too few dimensions on input") if shape[-2] != shape[-1]: raise ValueError("Input is not square") D = shape[-1] N = D * (D - 1) // 2 return shape[:-2] + (N,)
[docs]class SoftmaxTransform(Transform): r""" Transform from unconstrained space to the simplex via :math:`y = \exp(x)` then normalizing. This is not bijective and cannot be used for HMC. However this acts mostly coordinate-wise (except for the final normalization), and thus is appropriate for coordinate-wise optimization algorithms. """ domain = constraints.real_vector codomain = constraints.simplex def __eq__(self, other): return isinstance(other, SoftmaxTransform) def _call(self, x): logprobs = x probs = (logprobs - logprobs.max(-1, True)[0]).exp() return probs / probs.sum(-1, True) def _inverse(self, y): probs = y return probs.log() def forward_shape(self, shape): if len(shape) < 1: raise ValueError("Too few dimensions on input") return shape def inverse_shape(self, shape): if len(shape) < 1: raise ValueError("Too few dimensions on input") return shape
[docs]class StickBreakingTransform(Transform): """ Transform from unconstrained space to the simplex of one additional dimension via a stick-breaking process. This transform arises as an iterated sigmoid transform in a stick-breaking construction of the `Dirichlet` distribution: the first logit is transformed via sigmoid to the first probability and the probability of everything else, and then the process recurses. This is bijective and appropriate for use in HMC; however it mixes coordinates together and is less appropriate for optimization. """ domain = constraints.real_vector codomain = constraints.simplex bijective = True def __eq__(self, other): return isinstance(other, StickBreakingTransform) def _call(self, x): offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1) z = _clipped_sigmoid(x - offset.log()) z_cumprod = (1 - z).cumprod(-1) y = pad(z, [0, 1], value=1) * pad(z_cumprod, [1, 0], value=1) return y def _inverse(self, y): y_crop = y[..., :-1] offset = y.shape[-1] - y.new_ones(y_crop.shape[-1]).cumsum(-1) sf = 1 - y_crop.cumsum(-1) # we clamp to make sure that sf is positive which sometimes does not # happen when y[-1] ~ 0 or y[:-1].sum() ~ 1 sf = torch.clamp(sf, min=torch.finfo(y.dtype).tiny) x = y_crop.log() - sf.log() + offset.log() return x def log_abs_det_jacobian(self, x, y): offset = x.shape[-1] + 1 - x.new_ones(x.shape[-1]).cumsum(-1) x = x - offset.log() # use the identity 1 - sigmoid(x) = exp(-x) * sigmoid(x) detJ = (-x + F.logsigmoid(x) + y[..., :-1].log()).sum(-1) return detJ def forward_shape(self, shape): if len(shape) < 1: raise ValueError("Too few dimensions on input") return shape[:-1] + (shape[-1] + 1,) def inverse_shape(self, shape): if len(shape) < 1: raise ValueError("Too few dimensions on input") return shape[:-1] + (shape[-1] - 1,)
[docs]class LowerCholeskyTransform(Transform): """ Transform from unconstrained matrices to lower-triangular matrices with nonnegative diagonal entries. This is useful for parameterizing positive definite matrices in terms of their Cholesky factorization. """ domain = constraints.independent(constraints.real, 2) codomain = constraints.lower_cholesky def __eq__(self, other): return isinstance(other, LowerCholeskyTransform) def _call(self, x): return x.tril(-1) + x.diagonal(dim1=-2, dim2=-1).exp().diag_embed() def _inverse(self, y): return y.tril(-1) + y.diagonal(dim1=-2, dim2=-1).log().diag_embed()
[docs]class PositiveDefiniteTransform(Transform): """ Transform from unconstrained matrices to positive-definite matrices. """ domain = constraints.independent(constraints.real, 2) codomain = constraints.positive_definite # type: ignore[assignment] def __eq__(self, other): return isinstance(other, PositiveDefiniteTransform) def _call(self, x): x = LowerCholeskyTransform()(x) return x @ x.mT def _inverse(self, y): y = torch.linalg.cholesky(y) return LowerCholeskyTransform().inv(y)
[docs]class CatTransform(Transform): """ Transform functor that applies a sequence of transforms `tseq` component-wise to each submatrix at `dim`, of length `lengths[dim]`, in a way compatible with :func:`torch.cat`. Example:: x0 = torch.cat([torch.range(1, 10), torch.range(1, 10)], dim=0) x = torch.cat([x0, x0], dim=0) t0 = CatTransform([ExpTransform(), identity_transform], dim=0, lengths=[10, 10]) t = CatTransform([t0, t0], dim=0, lengths=[20, 20]) y = t(x) """ transforms: List[Transform] def __init__(self, tseq, dim=0, lengths=None, cache_size=0): assert all(isinstance(t, Transform) for t in tseq) if cache_size: tseq = [t.with_cache(cache_size) for t in tseq] super().__init__(cache_size=cache_size) self.transforms = list(tseq) if lengths is None: lengths = [1] * len(self.transforms) self.lengths = list(lengths) assert len(self.lengths) == len(self.transforms) self.dim = dim @lazy_property def event_dim(self): return max(t.event_dim for t in self.transforms) @lazy_property def length(self): return sum(self.lengths) def with_cache(self, cache_size=1): if self._cache_size == cache_size: return self return CatTransform(self.transforms, self.dim, self.lengths, cache_size) def _call(self, x): assert -x.dim() <= self.dim < x.dim() assert x.size(self.dim) == self.length yslices = [] start = 0 for trans, length in zip(self.transforms, self.lengths): xslice = x.narrow(self.dim, start, length) yslices.append(trans(xslice)) start = start + length # avoid += for jit compat return torch.cat(yslices, dim=self.dim) def _inverse(self, y): assert -y.dim() <= self.dim < y.dim() assert y.size(self.dim) == self.length xslices = [] start = 0 for trans, length in zip(self.transforms, self.lengths): yslice = y.narrow(self.dim, start, length) xslices.append(trans.inv(yslice)) start = start + length # avoid += for jit compat return torch.cat(xslices, dim=self.dim) def log_abs_det_jacobian(self, x, y): assert -x.dim() <= self.dim < x.dim() assert x.size(self.dim) == self.length assert -y.dim() <= self.dim < y.dim() assert y.size(self.dim) == self.length logdetjacs = [] start = 0 for trans, length in zip(self.transforms, self.lengths): xslice = x.narrow(self.dim, start, length) yslice = y.narrow(self.dim, start, length) logdetjac = trans.log_abs_det_jacobian(xslice, yslice) if trans.event_dim < self.event_dim: logdetjac = _sum_rightmost(logdetjac, self.event_dim - trans.event_dim) logdetjacs.append(logdetjac) start = start + length # avoid += for jit compat # Decide whether to concatenate or sum. dim = self.dim if dim >= 0: dim = dim - x.dim() dim = dim + self.event_dim if dim < 0: return torch.cat(logdetjacs, dim=dim) else: return sum(logdetjacs) @property def bijective(self): return all(t.bijective for t in self.transforms) @constraints.dependent_property def domain(self): return constraints.cat( [t.domain for t in self.transforms], self.dim, self.lengths ) @constraints.dependent_property def codomain(self): return constraints.cat( [t.codomain for t in self.transforms], self.dim, self.lengths )
[docs]class StackTransform(Transform): """ Transform functor that applies a sequence of transforms `tseq` component-wise to each submatrix at `dim` in a way compatible with :func:`torch.stack`. Example:: x = torch.stack([torch.range(1, 10), torch.range(1, 10)], dim=1) t = StackTransform([ExpTransform(), identity_transform], dim=1) y = t(x) """ transforms: List[Transform] def __init__(self, tseq, dim=0, cache_size=0): assert all(isinstance(t, Transform) for t in tseq) if cache_size: tseq = [t.with_cache(cache_size) for t in tseq] super().__init__(cache_size=cache_size) self.transforms = list(tseq) self.dim = dim def with_cache(self, cache_size=1): if self._cache_size == cache_size: return self return StackTransform(self.transforms, self.dim, cache_size) def _slice(self, z): return [z.select(self.dim, i) for i in range(z.size(self.dim))] def _call(self, x): assert -x.dim() <= self.dim < x.dim() assert x.size(self.dim) == len(self.transforms) yslices = [] for xslice, trans in zip(self._slice(x), self.transforms): yslices.append(trans(xslice)) return torch.stack(yslices, dim=self.dim) def _inverse(self, y): assert -y.dim() <= self.dim < y.dim() assert y.size(self.dim) == len(self.transforms) xslices = [] for yslice, trans in zip(self._slice(y), self.transforms): xslices.append(trans.inv(yslice)) return torch.stack(xslices, dim=self.dim) def log_abs_det_jacobian(self, x, y): assert -x.dim() <= self.dim < x.dim() assert x.size(self.dim) == len(self.transforms) assert -y.dim() <= self.dim < y.dim() assert y.size(self.dim) == len(self.transforms) logdetjacs = [] yslices = self._slice(y) xslices = self._slice(x) for xslice, yslice, trans in zip(xslices, yslices, self.transforms): logdetjacs.append(trans.log_abs_det_jacobian(xslice, yslice)) return torch.stack(logdetjacs, dim=self.dim) @property def bijective(self): return all(t.bijective for t in self.transforms) @constraints.dependent_property def domain(self): return constraints.stack([t.domain for t in self.transforms], self.dim) @constraints.dependent_property def codomain(self): return constraints.stack([t.codomain for t in self.transforms], self.dim)
[docs]class CumulativeDistributionTransform(Transform): """ Transform via the cumulative distribution function of a probability distribution. Args: distribution (Distribution): Distribution whose cumulative distribution function to use for the transformation. Example:: # Construct a Gaussian copula from a multivariate normal. base_dist = MultivariateNormal( loc=torch.zeros(2), scale_tril=LKJCholesky(2).sample(), ) transform = CumulativeDistributionTransform(Normal(0, 1)) copula = TransformedDistribution(base_dist, [transform]) """ bijective = True codomain = constraints.unit_interval sign = +1 def __init__(self, distribution, cache_size=0): super().__init__(cache_size=cache_size) self.distribution = distribution @property def domain(self): return self.distribution.support def _call(self, x): return self.distribution.cdf(x) def _inverse(self, y): return self.distribution.icdf(y) def log_abs_det_jacobian(self, x, y): return self.distribution.log_prob(x) def with_cache(self, cache_size=1): if self._cache_size == cache_size: return self return CumulativeDistributionTransform(self.distribution, cache_size=cache_size)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources