python.closure¶
cond_closed_over_variable¶
Original source code:
import torch
from functorch.experimental.control_flow import cond
class CondClosedOverVariable(torch.nn.Module):
"""
torch.cond() supports branches closed over arbitrary variables.
"""
def forward(self, pred, x):
def true_fn(val):
return x * 2
def false_fn(val):
return x - 2
return cond(pred, true_fn, false_fn, [x + 1])
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: b8[], arg1_1: f32[3, 2]):
#
add: f32[3, 2] = torch.ops.aten.add.Tensor(arg1_1, 1)
submodule_0 = self.submodule_0
submodule_1 = self.submodule_1
cond: f32[3, 2] = torch.ops.higher_order.cond(arg0_1, submodule_0, submodule_1, [add, arg1_1, arg1_1]); arg0_1 = submodule_0 = submodule_1 = add = arg1_1 = None
return (cond,)
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[3, 2], arg1_1: f32[3, 2], arg2_1: f32[3, 2]):
mul: f32[3, 2] = torch.ops.aten.mul.Tensor(arg2_1, 2); arg2_1 = None
return mul
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[3, 2], arg1_1: f32[3, 2], arg2_1: f32[3, 2]):
sub: f32[3, 2] = torch.ops.aten.sub.Tensor(arg2_1, 2); arg2_1 = None
return sub
Graph Signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1', 'arg1_1'], user_outputs=['cond'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None)
Symbol to range: {}
nested_function¶
Original source code:
import torch
def nested_function(a, b):
"""
Nested functions are traced through. Side effects on global captures
are not supported though.
"""
x = a + b
z = a - b
def closure(y):
nonlocal x
x += 1
return x * y + z
return closure(x)
Result:
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, arg0_1: f32[3, 2], arg1_1: f32[2]):
#
add: f32[3, 2] = torch.ops.aten.add.Tensor(arg0_1, arg1_1)
sub: f32[3, 2] = torch.ops.aten.sub.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None
add_1: f32[3, 2] = torch.ops.aten.add.Tensor(add, 1); add = None
mul: f32[3, 2] = torch.ops.aten.mul.Tensor(add_1, add_1); add_1 = None
add_2: f32[3, 2] = torch.ops.aten.add.Tensor(mul, sub); mul = sub = None
return (add_2,)
Graph Signature: ExportGraphSignature(parameters=[], buffers=[], user_inputs=['arg0_1', 'arg1_1'], user_outputs=['add_2'], inputs_to_parameters={}, inputs_to_buffers={}, buffers_to_mutate={}, backward_signature=None, assertion_dep_token=None)
Symbol to range: {}