torch.fft.ihfft¶
- torch.fft.ihfft(input, n=None, dim=-1, norm=None, *, out=None) Tensor ¶
Computes the inverse of
hfft()
.input
must be a real-valued signal, interpreted in the Fourier domain. The IFFT of a real signal is Hermitian-symmetric,X[i] = conj(X[-i])
.ihfft()
represents this in the one-sided form where only the positive frequencies below the Nyquist frequency are included. To compute the full output, useifft()
.Note
Supports torch.half on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimension.
- Parameters
input (Tensor) – the real input tensor
n (int, optional) – Signal length. If given, the input will either be zero-padded or trimmed to this length before computing the Hermitian IFFT.
dim (int, optional) – The dimension along which to take the one dimensional Hermitian IFFT.
norm (str, optional) –
Normalization mode. For the backward transform (
ihfft()
), these correspond to:"forward"
- no normalization"backward"
- normalize by1/n
"ortho"
- normalize by1/sqrt(n)
(making the IFFT orthonormal)
Calling the forward transform (
hfft()
) with the same normalization mode will apply an overall normalization of1/n
between the two transforms. This is required to makeihfft()
the exact inverse.Default is
"backward"
(normalize by1/n
).
- Keyword Arguments
out (Tensor, optional) – the output tensor.
Example
>>> t = torch.arange(5) >>> t tensor([0, 1, 2, 3, 4]) >>> torch.fft.ihfft(t) tensor([ 2.0000-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j])
Compare against the full output from
ifft()
:>>> torch.fft.ifft(t) tensor([ 2.0000-0.0000j, -0.5000-0.6882j, -0.5000-0.1625j, -0.5000+0.1625j, -0.5000+0.6882j])