Source code for torch.backends.cudnn
import os
import sys
import warnings
from contextlib import contextmanager
from typing import Optional
import torch
from torch.backends import __allow_nonbracketed_mutation, ContextProp, PropModule
try:
from torch._C import _cudnn
except ImportError:
_cudnn = None # type: ignore[assignment]
# Write:
#
# torch.backends.cudnn.enabled = False
#
# to globally disable CuDNN/MIOpen
__cudnn_version: Optional[int] = None
if _cudnn is not None:
def _init():
global __cudnn_version
if __cudnn_version is None:
__cudnn_version = _cudnn.getVersionInt()
runtime_version = _cudnn.getRuntimeVersion()
compile_version = _cudnn.getCompileVersion()
runtime_major, runtime_minor, _ = runtime_version
compile_major, compile_minor, _ = compile_version
# Different major versions are always incompatible
# Starting with cuDNN 7, minor versions are backwards-compatible
# Not sure about MIOpen (ROCm), so always do a strict check
if runtime_major != compile_major:
cudnn_compatible = False
elif runtime_major < 7 or not _cudnn.is_cuda:
cudnn_compatible = runtime_minor == compile_minor
else:
cudnn_compatible = runtime_minor >= compile_minor
if not cudnn_compatible:
if os.environ.get("PYTORCH_SKIP_CUDNN_COMPATIBILITY_CHECK", "0") == "1":
return True
base_error_msg = (
f"cuDNN version incompatibility: "
f"PyTorch was compiled against {compile_version} "
f"but found runtime version {runtime_version}. "
f"PyTorch already comes bundled with cuDNN. "
f"One option to resolving this error is to ensure PyTorch "
f"can find the bundled cuDNN. "
)
if "LD_LIBRARY_PATH" in os.environ:
ld_library_path = os.environ.get("LD_LIBRARY_PATH", "")
if any(
substring in ld_library_path for substring in ["cuda", "cudnn"]
):
raise RuntimeError(
f"{base_error_msg}"
f"Looks like your LD_LIBRARY_PATH contains incompatible version of cudnn. "
f"Please either remove it from the path or install cudnn {compile_version}"
)
else:
raise RuntimeError(
f"{base_error_msg}"
f"one possibility is that there is a "
f"conflicting cuDNN in LD_LIBRARY_PATH."
)
else:
raise RuntimeError(base_error_msg)
return True
else:
def _init():
return False
[docs]def version():
"""Return the version of cuDNN."""
if not _init():
return None
return __cudnn_version
CUDNN_TENSOR_DTYPES = {
torch.half,
torch.float,
torch.double,
}
[docs]def is_available():
r"""Return a bool indicating if CUDNN is currently available."""
return torch._C._has_cudnn
def is_acceptable(tensor):
if not torch._C._get_cudnn_enabled():
return False
if tensor.device.type != "cuda" or tensor.dtype not in CUDNN_TENSOR_DTYPES:
return False
if not is_available():
warnings.warn(
"PyTorch was compiled without cuDNN/MIOpen support. To use cuDNN/MIOpen, rebuild "
"PyTorch making sure the library is visible to the build system."
)
return False
if not _init():
warnings.warn(
"cuDNN/MIOpen library not found. Check your {libpath}".format(
libpath={"darwin": "DYLD_LIBRARY_PATH", "win32": "PATH"}.get(
sys.platform, "LD_LIBRARY_PATH"
)
)
)
return False
return True
def set_flags(
_enabled=None,
_benchmark=None,
_benchmark_limit=None,
_deterministic=None,
_allow_tf32=None,
):
orig_flags = (
torch._C._get_cudnn_enabled(),
torch._C._get_cudnn_benchmark(),
None if not is_available() else torch._C._cuda_get_cudnn_benchmark_limit(),
torch._C._get_cudnn_deterministic(),
torch._C._get_cudnn_allow_tf32(),
)
if _enabled is not None:
torch._C._set_cudnn_enabled(_enabled)
if _benchmark is not None:
torch._C._set_cudnn_benchmark(_benchmark)
if _benchmark_limit is not None and is_available():
torch._C._cuda_set_cudnn_benchmark_limit(_benchmark_limit)
if _deterministic is not None:
torch._C._set_cudnn_deterministic(_deterministic)
if _allow_tf32 is not None:
torch._C._set_cudnn_allow_tf32(_allow_tf32)
return orig_flags
@contextmanager
def flags(
enabled=False,
benchmark=False,
benchmark_limit=10,
deterministic=False,
allow_tf32=True,
):
with __allow_nonbracketed_mutation():
orig_flags = set_flags(
enabled, benchmark, benchmark_limit, deterministic, allow_tf32
)
try:
yield
finally:
# recover the previous values
with __allow_nonbracketed_mutation():
set_flags(*orig_flags)
# The magic here is to allow us to intercept code like this:
#
# torch.backends.<cudnn|mkldnn>.enabled = True
class CudnnModule(PropModule):
def __init__(self, m, name):
super().__init__(m, name)
enabled = ContextProp(torch._C._get_cudnn_enabled, torch._C._set_cudnn_enabled)
deterministic = ContextProp(
torch._C._get_cudnn_deterministic, torch._C._set_cudnn_deterministic
)
benchmark = ContextProp(
torch._C._get_cudnn_benchmark, torch._C._set_cudnn_benchmark
)
benchmark_limit = None
if is_available():
benchmark_limit = ContextProp(
torch._C._cuda_get_cudnn_benchmark_limit,
torch._C._cuda_set_cudnn_benchmark_limit,
)
allow_tf32 = ContextProp(
torch._C._get_cudnn_allow_tf32, torch._C._set_cudnn_allow_tf32
)
# This is the sys.modules replacement trick, see
# https://stackoverflow.com/questions/2447353/getattr-on-a-module/7668273#7668273
sys.modules[__name__] = CudnnModule(sys.modules[__name__], __name__)
# Add type annotation for the replaced module
enabled: bool
deterministic: bool
benchmark: bool
allow_tf32: bool
benchmark_limit: int