Source code for torch.distributed.checkpoint.format_utils
import argparse
import os
from enum import Enum
from typing import cast, Dict, List, Optional, Union
import torch
import torch.distributed as dist
from torch.distributed._shard._utils import narrow_tensor_by_index
from torch.distributed.checkpoint import FileSystemReader, FileSystemWriter
from torch.distributed.checkpoint._nested_dict import flatten_state_dict
from torch.distributed.checkpoint._traverse import set_element
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner
from torch.distributed.checkpoint.metadata import (
Metadata,
STATE_DICT_TYPE,
STORAGE_TYPES,
TensorProperties,
TensorStorageMetadata,
)
from torch.distributed.checkpoint.planner import LoadItemType, LoadPlan, LoadPlanner
from torch.distributed.checkpoint.planner_helpers import _create_chunk_list
from torch.distributed.checkpoint.state_dict_loader import _load_state_dict
from torch.distributed.checkpoint.state_dict_saver import _save_state_dict
from torch.distributed.checkpoint.storage import StorageReader
from torch.futures import Future
__all__ = [
"dcp_to_torch_save",
"torch_save_to_dcp",
"BroadcastingTorchSaveReader",
"DynamicMetaLoadPlanner",
]
class _EmptyStateDictLoadPlanner(DefaultLoadPlanner):
"""
Extension of DefaultLoadPlanner, which rebuilds state_dict from the saved metadata.
Useful for loading in state_dict without first initializing a model, such as
when converting a DCP checkpoint into a Torch save file.
. N.B. `state_dict` must be an empty dictionary when used with this LoadPlanner
.. warning::
Because the entire state dict is initialized, It's recommended to only utilize
this LoadPlanner on a single rank or process to avoid OOM.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def set_up_planner(
self,
state_dict: STATE_DICT_TYPE,
metadata: Metadata,
is_coordinator: bool,
) -> None:
assert not state_dict
# rebuild the state dict from the metadata
for k, v in metadata.state_dict_metadata.items():
if isinstance(v, TensorStorageMetadata):
v = torch.empty(v.size, dtype=v.properties.dtype) # type: ignore[assignment]
if k in metadata.planner_data:
set_element(state_dict, metadata.planner_data[k], v)
else:
state_dict[k] = v
super().set_up_planner(state_dict, metadata, is_coordinator)
[docs]class BroadcastingTorchSaveReader(StorageReader):
"""
StorageReader for reading a Torch Save file. This reader will read the entire checkpoint
on the coordinator rank, and then broadcast and shard each tensor to all ranks.
. N.B. Intended to be used with DynamicMetaLoadPlanner
.. warning::
Current implementation only supports loading Tensors.
>>> # xdoctest: +SKIP("undefined vars")
>>> sd = {"mode": model}
>>> dcp.load(
>>> sd,
>>> storage_reader=BroadcastingTorchSaveReader(),
>>> planner=DynamicMetaLoadPlanner(),
>>> checkpoint_id="path_to_model.pt"
>>> )
"""
def __init__(
self,
checkpoint_id: Optional[Union[str, os.PathLike]] = None,
coordinator_rank: int = 0,
) -> None:
self.checkpoint_id = checkpoint_id
self.coordinator_rank = coordinator_rank
[docs] def read_metadata(self) -> Metadata:
"""Extends the default StorageReader to support building the metadata file"""
# Metadata is built in planner.set_up_planner, since we are not actually reading metadata from
# the disk
return Metadata(state_dict_metadata={})
[docs] def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]:
"""
Reads torch save data on the coordinator rank, and broadcast afterwards
this incurrs a communication cost, but avoids having to load
the entire checkpoint on each rank, hopefully preventing OOM issues
"""
planner = cast(DefaultLoadPlanner, planner)
# data is read in on the coordinator rank, and broadcast afterwards
# this incurrs a communication cost, but it avoids having to load
# the entire checkpoint on each rank, hopefully preventing OOM issues
# TODO: read on each host, instead of only the coordinator
if self.is_coordinator:
assert self.checkpoint_id is not None
torch_state_dict = torch.load(self.checkpoint_id, map_location="cpu")
if planner.flatten_state_dict:
torch_state_dict, _ = flatten_state_dict(torch_state_dict)
else:
torch_state_dict = None
for req in plan.items:
if req.type == LoadItemType.BYTE_IO:
raise RuntimeError(
f"Non-tensor value identified at {req.storage_index.fqn}. "
f"At this time {type(self).__name__} only supports loading Tensors."
)
# Broadcast the tensor from the coordinator rank
if self.is_coordinator:
tensor = torch_state_dict[req.storage_index.fqn].cuda()
else:
tensor = torch.empty_like(planner.state_dict[req.storage_index.fqn])
dist.broadcast(tensor, src=self.coordinator_rank, async_op=False)
tensor = narrow_tensor_by_index(tensor, req.storage_offsets, req.lengths)
target_tensor = planner.resolve_tensor(req).detach()
assert target_tensor.size() == tensor.size(), (
f"req {req.storage_index} mismatch sizes, "
f"{target_tensor.size()} vs {tensor.size()}"
)
target_tensor.copy_(tensor)
planner.commit_tensor(req, target_tensor)
fut: Future = Future()
fut.set_result(None)
return fut
[docs] def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
"""Implementation of the StorageReader method"""
self.is_coordinator = is_coordinator
if self.is_coordinator:
assert dist.get_rank() == self.coordinator_rank
assert self.checkpoint_id is not None
[docs] def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
"""Implementation of the StorageReader method"""
return plan
[docs] def prepare_global_plan(self, global_plan: List[LoadPlan]) -> List[LoadPlan]:
"""Implementation of the StorageReader method"""
return global_plan
[docs] def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None:
"""Implementation of the StorageReader method"""
self.checkpoint_id = checkpoint_id
[docs] @classmethod
def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
"""Implementation of the StorageReader method"""
return os.path.isfile(checkpoint_id)
[docs]class DynamicMetaLoadPlanner(DefaultLoadPlanner):
"""
Extension of DefaultLoadPlanner, which creates a new Metadata object based on the passed in state dict,
avoiding the need to read metadata from disk. This is useful when reading formats which don't have a
metadata file, like Torch Save files.
. N.B. Intended to be used with BroadcastingTorchSaveReader
.. warning::
Current implementation only supports loading Tensors.
>>> # xdoctest: +SKIP("undefined vars")
>>> sd = {"mode": model}
>>> dcp.load(
>>> sd,
>>> storage_reader=BroadcastingTorchSaveReader(),
>>> planner=DynamicMetaLoadPlanner(),
>>> checkpoint_id="path_to_model.pt"
>>> )
"""
[docs] def set_up_planner(
self,
state_dict: STATE_DICT_TYPE,
metadata: Metadata,
is_coordinator: bool,
) -> None:
"""Setups of the planner, extnding default behavior by creating the Metadata object from the state dict"""
super().set_up_planner(state_dict, metadata, is_coordinator)
state_dict_metadata: Dict[str, STORAGE_TYPES] = {}
for key, tensor in self.state_dict.items():
if not torch.is_tensor(tensor):
raise RuntimeError(
f"Non-tensor value identified at {key}. "
f"At this time {type(self).__name__} only supports loading Tensors."
)
state_dict_metadata[key] = TensorStorageMetadata(
TensorProperties(dtype=tensor.dtype),
tensor.size(),
_create_chunk_list(tensor),
)
self.metadata = Metadata(state_dict_metadata=state_dict_metadata)
[docs]def dcp_to_torch_save(
dcp_checkpoint_dir: Union[str, os.PathLike],
torch_save_path: Union[str, os.PathLike],
):
"""
Given a directory containing a DCP checkpoint, this function will convert it into a
Torch save file.
Args:
dcp_checkpoint_dir: Directory containing the DCP checkpoint.
torch_save_path: Filename to store the converted Torch save file.
.. warning::
To avoid OOM, it's recommended to only run this function on a single rank.
"""
sd: STATE_DICT_TYPE = {}
_load_state_dict(
sd,
storage_reader=FileSystemReader(dcp_checkpoint_dir),
planner=_EmptyStateDictLoadPlanner(),
no_dist=True,
)
torch.save(sd, torch_save_path)
[docs]def torch_save_to_dcp(
torch_save_path: Union[str, os.PathLike],
dcp_checkpoint_dir: Union[str, os.PathLike],
):
"""
Given the location of a torch save file, converts it into a DCP checkpoint.
Args:
torch_save_path: Filename to store the converted Torch save file.
dcp_checkpoint_dir: Directory containing the DCP checkpoint.
.. warning::
To avoid OOM, it's recommended to only run this function on a single rank.
"""
state_dict = torch.load(torch_save_path)
# we don't need stateful behavior here because the expectation is anything loaded by
# torch.load would not contain stateful objects.
_save_state_dict(
state_dict, storage_writer=FileSystemWriter(dcp_checkpoint_dir), no_dist=True
)
if __name__ == "__main__":
class FormatMode(Enum):
TORCH_TO_DCP = "torch_to_dcp"
DCP_TO_TORCH = "dcp_to_torch"
# Parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument(
"mode",
type=str,
help="Conversion mode",
choices=[m.value for m in FormatMode],
default=FormatMode.TORCH_TO_DCP,
)
parser.add_argument("src", type=str, help="Path to the source model")
parser.add_argument("dst", type=str, help="Path to the destination model")
args = parser.parse_args()
print(
f"Converting checkpoint from {args.src} to {args.dst} using method: '{args.mode}'"
)
checkpoint_missing_warning = (
f"No checkpoint found at {args.src}. Skipping conversion."
)
if args.mode == FormatMode.TORCH_TO_DCP:
if os.path.isfile(args.src):
torch_save_to_dcp(args.src, args.dst)
else:
print(checkpoint_missing_warning)
elif args.mode == FormatMode.DCP_TO_TORCH:
if os.path.isdir(args.src):
dcp_to_torch_save(args.src, args.dst)
else:
print(checkpoint_missing_warning)