Source code for torch.xpu
r"""
This package introduces support for the XPU backend, specifically tailored for
Intel GPU optimization.
This package is lazily initialized, so you can always import it, and use
:func:`is_available()` to determine if your system supports XPU.
"""
import threading
import traceback
from functools import lru_cache
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch._C
from .. import device as _device
from .._utils import _dummy_type, _LazySeedTracker
from ._utils import _get_device_index
from .streams import Event, Stream
_initialized = False
_tls = threading.local()
_initialization_lock = threading.Lock()
_queued_calls: List[
Tuple[Callable[[], None], List[str]]
] = [] # don't invoke these until initialization occurs
_is_in_bad_fork = getattr(torch._C, "_xpu_isInBadFork", lambda: False)
_device_t = Union[_device, str, int, None]
_lazy_seed_tracker = _LazySeedTracker()
default_generators: Tuple[torch._C.Generator] = () # type: ignore[assignment]
def _is_compiled() -> bool:
r"""Return true if compile with XPU support."""
return torch._C._has_xpu
if _is_compiled():
_XpuDeviceProperties = torch._C._XpuDeviceProperties
_exchange_device = torch._C._xpu_exchangeDevice
_maybe_exchange_device = torch._C._xpu_maybeExchangeDevice
else:
# Define dummy if PyTorch was compiled without XPU
_XpuDeviceProperties = _dummy_type("_XpuDeviceProperties") # type: ignore[assignment, misc]
def _exchange_device(device: int) -> int:
raise NotImplementedError("PyTorch was compiled without XPU support")
def _maybe_exchange_device(device: int) -> int:
raise NotImplementedError("PyTorch was compiled without XPU support")
[docs]@lru_cache(maxsize=1)
def device_count() -> int:
r"""Return the number of XPU device available."""
if not _is_compiled():
return 0
return torch._C._xpu_getDeviceCount()
[docs]def is_available() -> bool:
r"""Return a bool indicating if XPU is currently available."""
# This function nerver throws.
return device_count() > 0
def is_bf16_supported():
r"""Return a bool indicating if the current XPU device supports dtype bfloat16."""
return True
[docs]def is_initialized():
r"""Return whether PyTorch's XPU state has been initialized."""
return _initialized and not _is_in_bad_fork()
def _lazy_call(callable, **kwargs):
if is_initialized():
callable()
else:
global _lazy_seed_tracker
if kwargs.get("seed_all", False):
_lazy_seed_tracker.queue_seed_all(callable, traceback.format_stack())
elif kwargs.get("seed", False):
_lazy_seed_tracker.queue_seed(callable, traceback.format_stack())
else:
# Don't store the actual traceback to avoid memory cycle
_queued_calls.append((callable, traceback.format_stack()))
[docs]def init():
r"""Initialize PyTorch's XPU state.
This is a Python API about lazy initialization that avoids initializing
XPU until the first time it is accessed. Does nothing if the XPU state is
already initialized.
"""
_lazy_init()
def _lazy_init():
global _initialized, _queued_calls
if is_initialized() or hasattr(_tls, "is_initializing"):
return
with _initialization_lock:
# This test was was protected via GIL. Double-check whether XPU has
# already been initialized.
if is_initialized():
return
# Stop promptly upon encountering a bad fork error.
if _is_in_bad_fork():
raise RuntimeError(
"Cannot re-initialize XPU in forked subprocess. To use XPU with "
"multiprocessing, you must use the 'spawn' start method"
)
if not _is_compiled():
raise AssertionError("Torch not compiled with XPU enabled")
# This function inits XPU backend and detects bad fork processing.
torch._C._xpu_init()
# Some of the queued calls may reentrantly call _lazy_init(); We need to
# just return without initializing in that case.
_tls.is_initializing = True
for calls in _lazy_seed_tracker.get_calls():
if calls:
_queued_calls.append(calls)
try:
for queued_call, orig_traceback in _queued_calls:
try:
queued_call()
except Exception as e:
msg = (
f"XPU call failed lazily at initialization with error: {str(e)}\n\n"
f"XPU call was originally invoked at:\n\n{''.join(orig_traceback)}"
)
raise Exception(msg) from e
finally:
delattr(_tls, "is_initializing")
_initialized = True
class _DeviceGuard:
def __init__(self, index: int):
self.idx = index
self.prev_idx = -1
def __enter__(self):
self.prev_idx = torch.xpu._exchange_device(self.idx)
def __exit__(self, type: Any, value: Any, traceback: Any):
self.idx = torch.xpu._maybe_exchange_device(self.prev_idx)
return False
[docs]class device:
r"""Context-manager that changes the selected device.
Args:
device (torch.device or int or str): device index to select. It's a no-op if
this argument is a negative integer or ``None``.
"""
def __init__(self, device: Any):
self.idx = _get_device_index(device, optional=True)
self.prev_idx = -1
def __enter__(self):
self.prev_idx = torch.xpu._exchange_device(self.idx)
def __exit__(self, type: Any, value: Any, traceback: Any):
self.idx = torch.xpu._maybe_exchange_device(self.prev_idx)
return False
[docs]class device_of(device):
r"""Context-manager that changes the current device to that of given object.
You can use both tensors and storages as arguments. If a given object is
not allocated on a XPU, this is a no-op.
Args:
obj (Tensor or Storage): object allocated on the selected device.
"""
def __init__(self, obj):
idx = obj.get_device() if obj.is_xpu else -1
super().__init__(idx)
[docs]def set_device(device: _device_t) -> None:
r"""Set the current device.
Args:
device (torch.device or int or str): selected device. This function is a
no-op if this argument is negative.
"""
_lazy_init()
device = _get_device_index(device)
if device >= 0:
torch._C._xpu_setDevice(device)
[docs]def get_device_name(device: Optional[_device_t] = None) -> str:
r"""Get the name of a device.
Args:
device (torch.device or int or str, optional): device for which to
return the name. This function is a no-op if this argument is a
negative integer. It uses the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
Returns:
str: the name of the device
"""
return get_device_properties(device).name
[docs]def get_device_capability(device: Optional[_device_t] = None) -> Dict[str, Any]:
r"""Get the xpu capability of a device.
Args:
device (torch.device or int or str, optional): device for which to
return the device capability. This function is a no-op if this
argument is a negative integer. It uses the current device, given by
:func:`~torch.xpu.current_device`, if :attr:`device` is ``None``
(default).
Returns:
Dict[str, Any]: the xpu capability dictionary of the device
"""
prop = get_device_properties(device)
return {
"max_work_group_size": prop.max_work_group_size,
"max_num_sub_groups": prop.max_num_sub_groups,
"sub_group_sizes": prop.sub_group_sizes,
}
[docs]def get_device_properties(device: Optional[_device_t] = None) -> _XpuDeviceProperties:
r"""Get the properties of a device.
Args:
device (torch.device or int or str): device for which to return the
properties of the device.
Returns:
_XpuDeviceProperties: the properties of the device
"""
_lazy_init()
device = _get_device_index(device, optional=True)
if device < 0 or device >= device_count():
raise AssertionError("Invalid device index")
return _get_device_properties(device) # type: ignore[name-defined] # noqa: F821
[docs]def current_device() -> int:
r"""Return the index of a currently selected device."""
_lazy_init()
return torch._C._xpu_getDevice()
def _get_device(device: Union[int, str, torch.device]) -> torch.device:
r"""Return the torch.device type object from the passed in device.
Args:
device (torch.device or int or str): selected device.
"""
if isinstance(device, str):
device = torch.device(device)
elif isinstance(device, int):
device = torch.device("xpu", device)
return device
[docs]class StreamContext:
r"""Context-manager that selects a given stream.
All XPU kernels queued within its context will be enqueued on a selected
stream.
Args:
Stream (Stream): selected stream. This manager is a no-op if it's
``None``.
.. note:: Streams are per-device.
"""
cur_stream: Optional["torch.xpu.Stream"]
def __init__(self, stream: Optional["torch.xpu.Stream"]):
self.stream = stream
self.idx = _get_device_index(None, True)
if self.idx is None:
self.idx = -1
def __enter__(self):
cur_stream = self.stream
if cur_stream is None or self.idx == -1:
return
self.src_prev_stream = torch.xpu.current_stream(None)
# If the stream is not on the current device, then set the current stream on the device
if self.src_prev_stream.device != cur_stream.device:
with device(cur_stream.device):
self.dst_prev_stream = torch.xpu.current_stream(cur_stream.device)
torch.xpu.set_stream(cur_stream)
def __exit__(self, type: Any, value: Any, traceback: Any):
cur_stream = self.stream
if cur_stream is None or self.idx == -1:
return
# Reset the stream on the original device and destination device
if self.src_prev_stream.device != cur_stream.device:
torch.xpu.set_stream(self.dst_prev_stream)
torch.xpu.set_stream(self.src_prev_stream)
[docs]def stream(stream: Optional["torch.xpu.Stream"]) -> StreamContext:
r"""Wrap around the Context-manager StreamContext that selects a given stream.
Arguments:
stream (Stream): selected stream. This manager is a no-op if it's ``None``.
"""
return StreamContext(stream)
def _set_stream_by_id(stream_id, device_index, device_type):
r"""set stream specified by the stream id, device index and device type
Args: stream_id (int): not visible to the user, used to assigned to the specific stream.
device_index (int): selected device index.
device_type (int): selected device type.
"""
torch._C._xpu_setStream(
stream_id=stream_id,
device_index=device_index,
device_type=device_type,
)
[docs]def set_stream(stream: Stream):
r"""Set the current stream.This is a wrapper API to set the stream.
Usage of this function is discouraged in favor of the ``stream``
context manager.
Args:
stream (Stream): selected stream. This function is a no-op
if this argument is ``None``.
"""
if stream is None:
return
_lazy_init()
_set_stream_by_id(
stream_id=stream.stream_id,
device_index=stream.device_index,
device_type=stream.device_type,
)
[docs]def current_stream(device: Optional[_device_t] = None) -> Stream:
r"""Return the currently selected :class:`Stream` for a given device.
Args:
device (torch.device or int, optional): selected device. Returns
the currently selected :class:`Stream` for the current device, given
by :func:`~torch.xpu.current_device`, if :attr:`device` is ``None``
(default).
"""
_lazy_init()
streamdata = torch._C._xpu_getCurrentStream(
_get_device_index(device, optional=True)
)
return Stream(
stream_id=streamdata[0], device_index=streamdata[1], device_type=streamdata[2]
)
[docs]def synchronize(device: _device_t = None) -> None:
r"""Wait for all kernels in all streams on a XPU device to complete.
Args:
device (torch.device or int, optional): device for which to synchronize.
It uses the current device, given by :func:`~torch.xpu.current_device`,
if :attr:`device` is ``None`` (default).
"""
_lazy_init()
device = _get_device_index(device, optional=True)
return torch._C._xpu_synchronize(device)
[docs]def empty_cache() -> None:
r"""Release all unoccupied cached memory currently held by the caching
allocator so that those can be used in other XPU application.
.. note::
:func:`~torch.xpu.empty_cache` doesn't increase the amount of XPU
memory available for PyTorch. However, it may help reduce fragmentation
of XPU memory in certain cases.
"""
if is_initialized():
torch._C._xpu_emptyCache()
def _get_generator(device: torch.device) -> torch._C.Generator:
r"""Return the XPU Generator object for the given device.
Args:
device (torch.device): selected device.
"""
idx = device.index
if idx is None:
idx = current_device()
return torch.xpu.default_generators[idx]
def _set_rng_state_offset(
offset: int, device: Union[int, str, torch.device] = "xpu"
) -> None:
r"""Set the random number generator state offset of the specified GPU.
Args:
offset (int): The desired offset
device (torch.device or int, optional): The device to set the RNG state.
Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device).
"""
final_device = _get_device(device)
def cb():
default_generator = _get_generator(final_device)
default_generator.set_offset(offset)
_lazy_call(cb)
def _get_rng_state_offset(device: Union[int, str, torch.device] = "xpu") -> int:
r"""Return the random number generator state offset of the specified GPU.
Args:
device (torch.device or int, optional): The device to return the RNG state offset of.
Default: ``'xpu'`` (i.e., ``torch.device('xpu')``, the current XPU device).
.. warning::
This function eagerly initializes XPU.
"""
_lazy_init()
final_device = _get_device(device)
default_generator = _get_generator(final_device)
return default_generator.get_offset()
from .random import * # noqa: F403
__all__ = [
"Event",
"Stream",
"StreamContext",
"current_device",
"current_stream",
"default_generators",
"device",
"device_of",
"device_count",
"empty_cache",
"get_device_capability",
"get_device_name",
"get_device_properties",
"get_rng_state",
"get_rng_state_all",
"get_stream",
"init",
"initial_seed",
"is_available",
"is_bf16_supported",
"is_initialized",
"manual_seed",
"manual_seed_all",
"seed",
"seed_all",
"set_device",
"set_rng_state",
"set_rng_state_all",
"set_stream",
"stream",
"streams",
"synchronize",
]