torch.map ============= dynamic_shape_map ^^^^^^^^^^^^^^^^^ .. note:: Tags: :doc:`torch.dynamic-shape `, :doc:`torch.map ` Support Level: SUPPORTED Original source code: .. code-block:: python import torch from functorch.experimental.control_flow import map def dynamic_shape_map(xs, y): """ functorch map() maps a function over the first tensor dimension. """ def body(x, y): return x + y return map(body, xs, y) Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, l_xs_: "f32[3, 2]", l_y_: "f32[2]"): body_graph_0 = self.body_graph_0 map_impl = torch.ops.higher_order.map_impl(body_graph_0, 1, l_xs_, l_y_); body_graph_0 = l_xs_ = l_y_ = None getitem: "f32[3, 2]" = map_impl[0]; map_impl = None return (getitem,) class (torch.nn.Module): def forward(self, arg0_1: "f32[2]", arg1_1: "f32[2]"): add: "f32[2]" = torch.ops.aten.add.Tensor(arg0_1, arg1_1); arg0_1 = arg1_1 = None return [add] Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=, arg=TensorArgument(name='l_xs_'), target=None), InputSpec(kind=, arg=TensorArgument(name='l_y_'), target=None)], output_specs=[OutputSpec(kind=, arg=TensorArgument(name='getitem'), target=None)]) Range constraints: {} Equality constraints: []